openfermion Documentation
Release 0.11.1.dev

openfermion

May 18, 2020

Contents

1 Code Documentation 3
1.1 openfermion.hamiltonians L. e e e e 3
1.2 openfermion.measurementsol e e e e 19
1.3 openfermion.ops L. e e e e e e e e e e e e e e 22
1.4 openfermion.transforms L e 37
1.5 openfermion.utilS L e e e e e e e e e e 48
Python Module Index 81
Index 83

openfermion Documentation, Release 0.11.1.dev

Contents

e Code Documentation: The code documentation of OpenFermion.

Contents 1

openfermion Documentation, Release 0.11.1.dev

2 Contents

CHAPTER 1

Code Documentation

1.1 openfermion.hamiltonians

class openfermion.hamiltonians.FermiHubbardModel (lattice, tunneling_parameters=None,
interaction_parameters=None,
potential_parameters=None,
magnetic_field=0.0, parti-
cle_hole_symmetry=False)
A general, parameterized Fermi-Hubbard model.

The general (AKA ‘multiband’) Fermi-Hubbard model has k degrees of freedom per site in a lattice. For a lattice
with 7 sites, there are N = k * n spatial orbitals. Additionally, in what we call the “spinful” model each spatial
orbital is associated with “up” and “down” spin orbitals, for a total of 2N spin orbitals; in the spinless model,
there is only one spin-orbital per site for a total of N.

For a lattice with only one type of site and edges from each site only to itself and its neighbors, the Hamiltonian

openfermion Documentation, Release 0.11.1.dev

for the spinful model has the form

H - Zt((loj)lSite) Z Z(a17a70ai’b7a + a/j’b,o-ai,a,g:r) (11)
) o

a<b
- Ztl(lr,ll%hbr) Z Z(a;a,aa’jvavg + a;-,a,aa’i;a,ff) - th(:ghbr) Z Z(az,a,oa’jybxa + a;,b,aai;aﬁ)
a {ig} o a<b (i) © (1.2)
+ 3 USTEDS N ot
a<b i o
+ UL NS g onae + Y USEP SN 0t
a {ij} © a<b (ij) ©
+ 3 USTETIS TSN nenil) 5
a<b 7 o
+ Z Uéflaghbm_) Z Z Ni.a,0Mj,a,—c + Z U(S?},ghbrﬁ_) Z Z ni,a,crnj,(ll,@
a {i,j} © a<b (i.) @

=D ta DD D
—h Z Z (Niya,r — ni(l,8)

where

e The indices (i, j) and {4, j} run over ordered and unordered pairs, respectively of sites ¢ and j of neigh-
boring sites in the lattice,

* g and b index degrees of freedom on each site,

e o € {1,!} is the spin,

is the tunneling amplitude between spin orbitals on the same site,

o t((lolr)xsite)

. tf;fhbr) is the tunneling amplitude between spin orbitals on neighboring sites,

. Uéol:] 51t¢:£) i the Coulomb potential between spin orbitals on the same site with the same (+) or different
(-) spins,

. Ué’nbghbr"i) is the Coulomb potential betwen spin orbitals on neighborings sites with the same (+) or dif-
ferent (-) spins,

* i, is the chemical potential, and

* h is the magnetic field.

One can also construct the Hamiltonian for the spinless model, which has the form

H ==t (al jaip + a yai.a) (1.9)
a<b 7
S S et i)~ S Sl ol
@ {i.3} a<b (i,5)
DU D ndhaly
a<b i
+ UL Ny anga + Y USRS nhi)
@ {45} a<b (4,5)

= e Y(ri3)

4 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

__init__ (lattice, tunneling_parameters=None, interaction_parameters=None, poten-

tial_parameters=None, magnetic_field=0.0, particle_hole_symmetry="False)
A Hubbard model defined on a lattice.

Parameters
e lattice (HubbardLattice)— The lattice on which the model is defined.

* (Iterable[Tuple[Hashable, Tuple[int, int],
(interaction_parameters) —float]], optional): The tunneling parameters.

(Iterable[Tuple[Hashable, Tuple[int, int], - float, int?]], optional):
The interaction parameters.

* potential_parameters (Iterable[Tuple[int, float]], optional)-—
The potential parameters.

* magnetic_field (float, optional)- The magnetic field. Default is O.

* particle_hole_symmetry — If true, each number operator n is replaced with n —
1/2.

Each group of parameters is specified as an iterable of tuples.
Each tunneling parameter is a tuple (edge_type, dofs, coefficient).
In the spinful, model, the tunneling parameter corresponds to the terms

D SHD B1 (RTINS B

(,9) € E(edgetype) o

and in the spinless model to

—t Z (a;r’aaj,b + a;bai,a> R

(’L,]) eE(e(lgetype)

where
* (a,b) is the pair of degrees
of freedom given by dofs; - E(¢d8¢%Pe) s the set of ordered pairs of
site indices returned by lattice.site_pairs_iter (edge_type, a != Db);
and

e tisthe coefficient.

Each interaction parameter is a tuple (edge_type, dofs, coefficient, spin_pairs). The
final spin_pairs element is optional, and will default to SpinPairs.ALL. In any case, it is ignored
for spinless lattices.

For example, in the spinful model if dofs indicates distinct degrees of freedom then the parameter corre-
sponds to the terms

U sum_{(i, j) in EA{(mathrm{edge type})}} sum_{(sigma, sigma’)} n_{i, a, sigma} n_{j, b, sigma’}
where
* (a,b) is the pair of degrees of
freedom given by dofs; - E(¢deetyPe) ig the set of ordered pairs of

site indices returned by lattice.site_pairs_iter (edge_type);

. openfermion.hamiltonians 5

openfermion Documentation, Release 0.11.1.dev

e Uisthe coefficient;and

* (0,0') runs over
— all four possible pairs of spins
if spin_pairs == SpinPairs.ALL, - {(1,1), (}, 1)} if spin_pairs == SpinPairs.DIFF, and -
{(1,1), L) Yif spingairs == SpinPairs.SAME.

Each potential parameter is a tuple (dof, coefficient). For example, in the spinful model, it
corresponds to the terms

—H E E Nia,05
[o

where
* 7 runs over the sites of the lattice;
* a is the degree of freedom dof; and
* nisthe coefficient.
In the spinless model, the magnetic field is ignored.

class openfermion.hamiltonians.HartreeFockFunctional (¥, one_body_integrals:
numpy.ndarray,
two_body_integrals:

numpy.ndarray, overlap:
numpy.ndarray, n_electrons:
int, model="rhf’, nu-
clear_repulsion: Op-
tional{float] = 0.0, ini-
tial_orbitals: Union[None,

Callable] = None)
Implementation of the objective function code for Restricted Hartree-Fock

The object transforms a variety of input types into the appropriate output. It does this by analyzing the type and
size of the input based on its knowledge of each type.

__init__ (% omne_body_integrals: numpy.ndarray, two_body_integrals: numpy.ndarray, overlap:
numpy.ndarray, n_electrons: int, model="rhf’, nuclear_repulsion: Optional[float] = 0.0,

initial_orbitals: Union[None, Callable] = None)
Initialize functional

Parameters

* one_body_ integrals - integrals in the atomic orbital basis for the one-body poten-
tial.

* two_body_integrals — integrals in the atomic obrital basis for the two-body poten-
tial ordered according to phi_{p}(@D*{*}phi_{q}*{*}(r2) x phi_{r}(r2)phi_{s}(rl)

* overlap - overlap integrals in the atomic orbital basis
* n_electrons — number of electrons total

* model — Optional flag for performing restricted-, unrestricted-, or generalized- hartree-
fock.

* nuclear_repulsion — Optional nuclear repulsion term. Energy is shifted by this
amount. default is 0.

6 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* initial_orbitals — Method for producing the initial orbitals from the atomic or-
bitals. Default is defining the core orbitals.

energy_from rhf_opdm (opdm_aa: numpy.ndarray) — float
Compute the energy given a spin-up opdm

Parameters opdm_aa — spin-up opdm. Should be an n x n matrix where n is the number of
spatial orbitals

Returns: RHF energy

rdms_from_rhf opdm (opdm_aa: numpy.ndarray) — openfermion.ops._interaction_rdm.InteractionRDM
Generate spin-orbital InteractionRDM object from the alpha-spin opdm.

Parameters opdm_aa — single spin sector of the 1-particle denstiy matrix
Returns: InteractionRDM object for full spin-orbital 1-RDM and 2-RDM

rhf_global_gradient (params: numpy.ndarray, alpha_opdm: numpy.ndarray)
Compute rhf global gradient

Parameters
* params — rhf-parameters for rotation matrix.

* alpha_opdm — 1-RDM corresponding to results of basis rotation parameterized by
¢)
params’.

Returns: gradient vector the same size as the input ‘params’

class openfermion.hamiltonians.MolecularData (geometry=None, basis=None, multiplic-
ity=None, charge=0, description="", file-
name=", data_directory=None)
Class for storing molecule data from a fixed basis set at a fixed geometry that is obtained from classical electronic
structure packages. Not every field is filled in every calculation. All data that can (for some instance) exceed 10
MB should be saved separately. Data saved in HDF5 format.

geometry
A list of tuples giving the coordinates of each atom. An example is [(‘H’, (0, 0, 0)), (‘H’, (0, 0, 0.7414))].
Distances in angstrom. Use atomic symbols to specify atoms.

basis
A string giving the basis set. An example is ‘cc-pvtz’.

charge
An integer giving the total molecular charge. Defaults to 0.

multiplicity
An integer giving the spin multiplicity.
description

An optional string giving a description. As an example, for dimers a likely description is the bond length
(e.g. 0.7414).

name
A string giving a characteristic name for the instance.

filename
The name of the file where the molecule data is saved.

n_atoms
Integer giving the number of atoms in the molecule.

n_electrons
Integer giving the number of electrons in the molecule.

1.1. openfermion.hamiltonians 7

openfermion Documentation, Release 0.11.1.dev

atoms
List of the atoms in molecule sorted by atomic number.

protons
List of atomic charges in molecule sorted by atomic number.

hf_ energy
Energy from open or closed shell Hartree-Fock.

nuclear_repulsion
Energy from nuclei-nuclei interaction.

canonical orbitals
numpy array giving canonical orbital coefficients.

n_orbitals
Integer giving total number of spatial orbitals.

n_qubits
Integer giving total number of qubits that would be needed.

orbital_energies
Numpy array giving the canonical orbital energies.

fock matrix
Numpy array giving the Fock matrix.

overlap_integrals
Numpy array of AO overlap integrals

one_body integrals
Numpy array of one-electron integrals

two_body_ integrals
Numpy array of two-electron integrals

mp2_energy
Energy from MP2 perturbation theory.

cisd_energy
Energy from configuration interaction singles + doubles.

cisd_one_rdm
Numpy array giving 1-RDM from CISD calculation.

cisd_two_rdm
Numpy array giving 2-RDM from CISD calculation.

fci_energy
Exact energy of molecule within given basis.

fci_ _one_rdm
Numpy array giving 1-RDM from FCI calculation.

fci_two_rdm
Numpy array giving 2-RDM from FCI calculation.

ccsd_energy
Energy from coupled cluster singles + doubles.

ccsd_single_amps
Numpy array holding single amplitudes

8 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

ccsd_double_amps
Numpy array holding double amplitudes

general_calculations
A dictionary storing general calculation results for this system annotated by the key.

__init__ (geometry=None, basis=None, multiplicity=None, charge=0, description=", filename=",

data_directory=None)
Initialize molecular metadata which defines class.

Parameters

* geometry — A list of tuples giving the coordinates of each atom. An example is [(‘H’,
(0, 0, 0)), (‘H’, (0, 0, 0.7414))]. Distances in angstrom. Use atomic symbols to specify
atoms. Only optional if loading from file.

* basis — A string giving the basis set. An example is ‘cc-pvtz’. Only optional if loading
from file.

* charge — An integer giving the total molecular charge. Defaults to 0. Only optional if
loading from file.

* multiplicity — An integer giving the spin multiplicity. Only optional if loading from
file.

* description — A optional string giving a description. As an example, for dimers a
likely description is the bond length (e.g. 0.7414).

» filename — An optional string giving name of file. If filename is not provided, one is
generated automatically.

* data_directory — Optional data directory to change from default data directory spec-
ified in config file.

get_active_space_integrals (occupied_indices=None, active_indices=None)
Restricts a molecule at a spatial orbital level to an active space

This active space may be defined by a list of active indices and doubly occupied indices. Note that
one_body_integrals and two_body_integrals must be defined n an orthonormal basis set.
Parameters

* occupied_indices — A list of spatial orbital indices indicating which orbitals should
be considered doubly occupied.

* active_indices — A list of spatial orbital indices indicating which orbitals should be
considered active.

Returns
tuple — Tuple with the following entries:

core_constant: Adjustment to constant shift in Hamiltonian from integrating out core or-
bitals

one_body_integrals_new: one-electron integrals over active space.
two_body_integrals_new: two-electron integrals over active space.
get_from_f£ile (property_name)
Helper routine to re-open HDFS5 file and pull out single property
Parameters property_name — Property name to load from self.filename

Returns

1.1.

openfermion.hamiltonians 9

openfermion Documentation, Release 0.11.1.dev

The data located at file[property_name] for the HDFS file at self.filename. Returns
None if the key is not found in the file.

get_integrals ()
Method to return 1-electron and 2-electron integrals in MO basis.

Returns
one_body_integrals —
An array of the one-electron integrals having shape of (n_orbitals, n_orbitals).

two_body_integrals: An array of the two-electron integrals having shape of (n_orbitals,
n_orbitals, n_orbitals, n_orbitals).

Raises MisissingCalculationError — If integrals are not calculated.

get_molecular_hamiltonian (occupied_indices=None, active_indices=None)
Output arrays of the second quantized Hamiltonian coefficients.

Parameters

* occupied_indices (1ist)— A listof spatial orbital indices indicating which orbitals
should be considered doubly occupied.

* active_indices (l1ist) — A list of spatial orbital indices indicating which orbitals
should be considered active.

Returns molecular_hamiltonian — An instance of the MolecularOperator class.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd
indices correspond to spin-down (beta) modes.

get_molecular_rdm (use_fci=False)
Method to return 1-RDM and 2-RDMs from CISD or FCI.

Parameters use_fci — Boolean indicating whether to use RDM from FCI calculation.
Returns rdm — An instance of the MolecularRDM class.
Raises MisissingCalculationError — If the CI calculation has not been performed.

get_n_alpha_electrons ()
Return number of alpha electrons.

get_n_beta_electrons ()
Return number of beta electrons.

init_lazy properties|()
Initializes properties loaded on demand to None

save ()
Method to save the class under a systematic name.

openfermion.hamiltonians.bose_hubbard (x_dimension, y_dimension, tunneling, interaction,

chemical_potential=0.0, dipole=0.0, periodic=True)
Return symbolic representation of a Bose-Hubbard Hamiltonian.

In this model, bosons move around on a lattice, and the energy of the model depends on where the bosons are.

The lattice is described by a 2D grid, with dimensions x_dimension x y_dimension. It is also possible to specify
if the grid has periodic boundary conditions or not.

10 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

The Hamiltonian for the Bose-Hubbard model has the form

where

— — 2 £
(i,9) (4,4) i

H=—tY (blb; +blb;) + VY blbiblb; + v > bbb — 1) = 1> blb;.

* The indices (i, j) run over pairs ¢ and j of nodes that are connected to each other in the grid

e ¢ is the tunneling amplitude

» U is the on-site interaction potential

* 1 is the chemical potential

* V is the dipole or nearest-neighbour interaction potential

Parameters

x_dimension (int)— The width of the grid.

y_dimension (int)— The height of the grid.

tunneling (float)— The tunneling amplitude ¢.

interaction (float)— The attractive local interaction strength U.

chemical_potential (float, optional)-The chemical potential u at each site.
Default value is 0.

periodic (bool, optional)—If True, add periodic boundary conditions. Default is
True.

dipole (float) - The attractive dipole interaction strength V.

Returns bose_hubbard_model — An instance of the BosonOperator class.

openfermion.hamiltonians.dual_basis_external potential (grid, geometry, spinless,

non_periodic=False, pe-
riod_cutoff=None)

Return the external potential in the dual basis of arXiv:1706.00023.

The external potential resulting from electrons interacting with nuclei in the plane wave dual basis. Note
that a cos term is used which is strictly only equivalent under aliasing in odd grids, and amounts to the
addition of an extra term to make the diagonals real on even grids. This approximation is not expected to
be significant and allows for use of even and odd grids on an even footing.

Parameters

grid (Grid) — The discretization to use.

geometry — A list of tuples giving the coordinates of each atom. example is [(‘H’, (0, O,
0)), (‘H’, (0, 0, 0.7414))]. Distances in atomic units. Use atomic symbols to specify atoms.

spinless (bool)— Whether to use the spinless model or not.
non_periodic (bool) - If the system is non-periodic, default to False.

period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions)

Returns FermionOperator — The dual basis operator.

1.1. openfermion.hamiltonians 11

openfermion Documentation, Release 0.11.1.dev

openfermion.hamiltonians.dual_basis_jellium model (grid, spinless=False, ki-
netic=True, potential=True,
include_constant=Fualse,
non_periodic=False, pe-

riod_cutoff=None)
Return jellium Hamiltonian in the dual basis of arXiv:1706.00023

Parameters
* grid (Grid) — The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.
* kinetic (bool)— Whether to include kinetic terms.
* potential (bool)— Whether to include potential terms.

* include_constant (bool)-— Whether to include the Madelung constant. Note constant
is unsupported for non-uniform, non-cubic cells with ions.

* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions).

Returns operator (FermionOperator)

openfermion.hamiltonians.dual_basis_kinetic (grid, spinless=False)

Return the kinetic operator in the dual basis of arXiv:1706.00023.
Parameters
e grid (Grid) — The discretization to use.
* spinless (bool) — Whether to use the spinless model or not.

Returns operator (FermionOperator)

openfermion.hamiltonians.dual_basis_potential (grid, spinless=False,

non_periodic=False, pe-
riod_cutoff=None)
Return the potential operator in the dual basis of arXiv:1706.00023

Parameters
e grid (Grid) — The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.
* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions).

Returns operator (FermionOperator)

openfermion.hamiltonians.fermi_hubbard (x_dimension, y_dimension, tunneling, coulomb,
chemical_potential=0.0, magnetic_field=0.0,
periodic=True, spinless=False, parti-

cle_hole_symmetry=False)
Return symbolic representation of a Fermi-Hubbard Hamiltonian.

The idea of this model is that some fermions move around on a grid and the energy of the model depends
on where the fermions are. The Hamiltonians of this model live on a grid of dimensions x_dimension x
y_dimension. The grid can have periodic boundary conditions or not. In the standard Fermi-Hubbard model
(which we call the “spinful”” model), there is room for an “up” fermion and a “down” fermion at each site on the

12

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

grid. In this model, there are a total of 2N spin-orbitals, where N = x_dimension * y_dimension is the number
of sites. In the spinless model, there is only one spin-orbital per site for a total of N.

The Hamiltonian for the spinful model has the form

where

H=-t Z Z(a;ﬂgam + a;’oai,g) + UZ aLTai,Ta;r’iai,i (1.14)

(i,4) @ @

o Z > al aio—h Z(a;ﬂTaM — al(bi$)

e The indices (7, j) run over pairs ¢ and j of sites that are connected to each other in the grid

e o € {1,]} is the spin

* tis the tunneling amplitude

e U is the Coulomb potential

* 1 is the chemical potential

* h is the magnetic field

One can also construct the Hamiltonian for the spinless model, which has the form

H=—t Z(agaj + a;»ai) +U Z agaia}aj - uZaIai.
(1,9) (4,5) @

Parameters

x_dimension (int)— The width of the grid.

y_dimension (int) — The height of the grid.

tunneling (float) — The tunneling amplitude ¢.

coulomb (float) — The attractive local interaction strength U'.

chemical_potential (float, optional)-The chemical potential i at each site.
Default value is O.

magnetic_field (float, optional)- The magnetic field h at each site. Default
value is 0. Ignored for the spinless case.

periodic (bool, optional)—If True, add periodic boundary conditions. Default is
True.

spinless (bool, optional) - If True, return a spinless Fermi-Hubbard model. De-
fault is False.

particle_hole_symmetry (bool, optional) - If False, the repulsion term cor-
responds to:

N-1

T 1
U g ayaRa) | Gk+1
k=1

If True, the repulsion term is replaced by:

N—1 1 1
U Z(a;iak - 5)(a2+1ak+1 - 5)
k=1

which is unchanged under a particle-hole transformation. Default is False

1.1. openfermion.hamiltonians 13

openfermion Documentation, Release 0.11.1.dev

Returns hubbard_model — An instance of the FermionOperator class.

openfermion.hamiltonians.get_matrix of eigs (w: numpy.ndarray) — numpy.ndarray
Transform the eigenvalues into a matrix corresponding to summing the adjoint rep.

Parameters w — eigenvalues of C-matrix

Returns: new array of transformed eigenvalues

openfermion.hamiltonians.hypercube_grid_with_given_wigner_seitz_radius_and_f£filling (dimension,

Return a Grid with the same number of orbitals along each dimension with the specified Wigner-Seitz radius.

Parameters
* dimension (int)— The number of spatial dimensions.
* grid_length (int)— The number of orbitals along each dimension.
* wigner_seitz_radius (float) - The Wigner-Seitz radius per particle, in Bohr.

* filling_ fraction (float)-The average spin-orbital occupation. Specifies the num-
ber of particles (rounding down).

* spinless (boolean)— Whether to give the system without or with spin.

openfermion.hamiltonians. jellium model (grid, spinless=False, plane_wave=True,
include_constant=Fualse, e_cutoff=None,

non_periodic=False, period_cutoff=None)
Return jellium Hamiltonian as FermionOperator class.

Parameters
* grid(openfermion.utils.Grid)— The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.

* plane_wave (bool) — Whether to return in momentum space (True) or position space
(False).

* include_constant (bool)— Whether to include the Madelung constant. Note constant
is unsupported for non-uniform, non-cubic cells with ions.

* e_cutoff (float)— Energy cutoff.
* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions).

Returns FermionOperator — The Hamiltonian of the model.

openfermion.hamiltonians. jordan_wigner_ dual_basis_hamiltonian (grid, geome-
try=None, spin-
less=False, in-

clude_constant=False)

Return the dual basis Hamiltonian as QubitOperator.
Parameters

* grid (Grid) — The discretization to use.

14 Chapter 1. Code Documentation

grid_lengtl
wigner_sel
Sill-
ing_fractio
spin-
less=True)

openfermion Documentation, Release 0.11.1.dev

* geometry — A list of tuples giving the coordinates of each atom. example is [(‘H’, (0, O,
0)), (‘H’, (0, 0, 0.7414))]. Distances in atomic units. Use atomic symbols to specify atoms.

* spinless (bool)— Whether to use the spinless model or not.
* include_constant (bool)— Whether to include the Madelung constant.
Returns hamiltonian (QubitOperator)

openfermion.hamiltonians. jordan_wigner_ dual_basis_jellium (grid, spinless=False, in-
clude_constant=Fualse)
Return the jellium Hamiltonian as QubitOperator in the dual basis.

Parameters
e grid (Grid) — The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.

* include_constant (bool)— Whether to include the Madelung constant. Note constant
is unsupported for non-uniform, non-cubic cells with ions.

Returns hamiltonian (QubitOperator)

openfermion.hamiltonians.load _molecular_hamiltonian (geometry, basis, mul-
tiplicity, description,
n_active_electrons=None,

n_active_orbitals=None)
Attempt to load a molecular Hamiltonian with the given properties.

Parameters

* geometry — A list of tuples giving the coordinates of each atom. An example is [(‘H’, (0,
0, 0)), (‘H’, (0, 0, 0.7414))]. Distances in angstrom. Use atomic symbols to specify atoms.

* basis — A string giving the basis set. An example is ‘cc-pvtz’. Only optional if loading
from file.

* multiplicity — An integer giving the spin multiplicity.
* description — A string giving a description.

* n_active_electrons — An optional integer specifying the number of electrons desired
in the active space.

* n_active_orbitals — An optional integer specifying the number of spatial orbitals
desired in the active space.

Returns The Hamiltonian as an InteractionOperator.

openfermion.hamiltonians.make_atom (atom_type, basis, filename="")
Prepare a molecular data instance for a single element.

Parameters

* atom_type - Float giving atomic symbol.

* basis — The basis in which to perform the calculation.
Returns atom — An instance of the MolecularData class.

openfermion.hamiltonians.make_atomic_lattice (nx_atoms, ny_atoms, nz_atoms, spac-
ing, basis, atom_type="H’, charge=0, file-
)))) name="")
Function to create atomic lattice with n_atoms.

Parameters

1.1. openfermion.hamiltonians 15

openfermion Documentation, Release 0.11.1.dev

* nx_atoms — Integer, the length of lattice (in number of atoms).

* ny_atoms — Integer, the width of lattice (in number of atoms).

* nz_atoms — Integer, the depth of lattice (in number of atoms).

* spacing - The spacing between atoms in the lattice in Angstroms.
* basis — The basis in which to perform the calculation.

* atom_type — String, the atomic symbol of the element in the ring. this defaults to ‘H’ for
Hydrogen.

* charge — An integer giving the total molecular charge. Defaults to 0.
* filename — An optional string to give a filename for the molecule.
Returns molecule — A an instance of the MolecularData class.
Raises MolecularLatticeError —If lattice specification is invalid.

openfermion.hamiltonians.make_atomic_ring (n_atoms, spacing, basis, atom_type="H’,

charge=0, filename="")
Function to create atomic rings with n_atoms.

Note that basic geometry suggests that for spacing L between atoms the radius of the ring should be L / (2 * cos
(pi/ 2 - theta/2))

Parameters
* n_atoms - Integer, the number of atoms in the ring.
* spacing — The spacing between atoms in the ring in Angstroms.
* basis — The basis in which to perform the calculation.

* atom_type — String, the atomic symbol of the element in the ring. this defaults to ‘H’ for
Hydrogen.

* charge — An integer giving the total molecular charge. Defaults to 0.
* filename — An optional string to give a filename for the molecule.
Returns molecule — A an instance of the MolecularData class.

openfermion.hamiltonians.mean_ field dwave (x_dimension, y_dimension, tunneling, sc_gap,

chemical_potential=0.0, periodic=True)
Return symbolic representation of a BCS mean-field d-wave Hamiltonian.

The Hamiltonians of this model live on a grid of dimensions x_dimension x y_dimension. The grid can have
periodic boundary conditions or not. Each site on the grid can have an “up” fermion and a “down” fermion.
Therefore, there are a total of 2N spin-orbitals, where N = x_dimension * y_dimension is the number of sites.

The Hamiltonian for this model has the form
H=-1 Z Z(aj}aa]}g + a;[-,gaw) — i Z Z azgai,g (1.16)
(i.3) © i

;
- Z Aij(ai,’ra;’,i - aha% + aj a4+ — a;(hd7)
(4,5)

where
* The indices (7, j) run over pairs i and j of sites that are connected to each other in the grid
* o € {1,]} is the spin

e t is the tunneling amplitude

16 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* A,;; is equal to +A/2 for horizontal edges and —A /2 for vertical edges, where A is the superconducting
gap.

* 1 is the chemical potential

Parameters
* x_dimension (int)— The width of the grid.
* y_dimension (int) - The height of the grid.
* tunneling (f1oat) - The tunneling amplitude ¢.
* sc_gap (float)— The superconducting gap A

* chemical_potential (float, optional)-—The chemical potential i at each site.
Default value is O.

* periodic (bool, optional)- If True, add periodic boundary conditions. Default is
True.

Returns mean_field_dwave_model — An instance of the FermionOperator class.

openfermion.hamiltonians.plane_wave_external potential (grid, geometry, spin-
less, e_cutoff=None,
non_periodic=False, pe-

riod_cutoff=None)
Return the external potential operator in plane wave basis.

The external potential resulting from electrons interacting with nuclei. It is defined here as the Fourier
transform of the dual basis Hamiltonian such that is spectrally equivalent in the case of both even and
odd grids. Otherwise, the two differ in the case of even grids.

Parameters

* grid (Grid) — The discretization to use.

* geometry — A list of tuples giving the coordinates of each atom. example is [(‘H’, (0, O,
0)), (‘H’, (0, 0, 0.7414))]. Distances in atomic units. Use atomic symbols to specify atoms.

* spinless — Bool, whether to use the spinless model or not.
* e_cutoff (float)— Energy cutoff.
* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions)

Returns FermionOperator — The plane wave operator.

openfermion.hamiltonians.plane_wave_hamiltonian (grid, geometry=None, spin-
less=False, plane_wave=True, in-
clude_constant=False, e_cutoff=None,
non_periodic=False, pe-
riod_cutoff=None)
Returns Hamiltonian as FermionOperator class.

Parameters
* grid (Grid) — The discretization to use.

* geometry — A list of tuples giving the coordinates of each atom. example is [(‘H’, (0, O,
0)), (‘H’, (0, 0, 0.7414))]. Distances in atomic units. Use atomic symbols to specify atoms.

1.1. openfermion.hamiltonians 17

openfermion Documentation, Release 0.11.1.dev

* spinless (bool)— Whether to use the spinless model or not.

* plane_wave (bool) — Whether to return in plane wave basis (True) or plane wave dual
basis (False).

* include_constant (bool)— Whether to include the Madelung constant.
* e_cutoff (float)— Energy cutoff.
* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions)

Returns FermionOperator — The hamiltonian.

openfermion.hamiltonians.plane_wave_kinetic (grid, spinless=False, e_cutoff=None)
Return the kinetic energy operator in the plane wave basis.

Parameters
* grid(openfermion.utils.Grid)— The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.
* e_cutoff (float)— Energy cutoff.

Returns FermionOperator — The kinetic momentum operator.

openfermion.hamiltonians.plane_wave_potential (grid, spinless=False, e_cutoff=None,
non_periodic=False, pe-
riod_cutoff=None)
Return the e-e potential operator in the plane wave basis.

Parameters
e grid (Grid) — The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.
* e_cutoff (float)— Energy cutoff.
* non_periodic (bool) - If the system is non-periodic, default to False.

* period_cutoff (float) — Period cutoff, default to grid.volume_scale() ** (1. /
grid.dimensions).

Returns operator (FermionOperator)

openfermion.hamiltonians.rhf_minimization (rif_object: open-
fermion.hamiltonians._hartree_fock.HartreeFockFunctional,
method: Optional[str] = 'CG’, initial_guess:
Union[None, numpy.ndarray] = None, ver-
bose: Optional[bool] = True, sp_options:
Union[None, Dict[KT, VT]] = None) —
scipy.optimize.optimize.OptimizeResult

Perform Hartree-Fock energy minimization

Parameters
» rhf object - An instantiation of the HartreeFockFunctional
* method — (optional) scipy optimization method
* initial_guess — (optional) initial rhf parameter vector. If None zero vector is used.

* verbose — (optional) turn on printing. This is passed to the scipy ‘disp’ option.

18 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* sp_options —
Returns: scipy.optimize result object

openfermion.hamiltonians.rhf params_to_matrix (parameters: numpy.ndarray,
num_orbitals: int, occ: Union[None,
List[int]] = None, virt: Union[None,

List[int]] = None) — numpy.ndarray
For restricted Hartree-Fock we have nocc * nvirt parameters. These are provided as a list that is ordered by

(virtuals) imes (occupied).

For example, for H4 we have 2 orbitals occupied and 2 virtuals

occupied = [0, 1] virtuals = [2, 3]

parameters = [(v_{0}, 0_{0}), (v_{0}, o_{1}), (v_{1}, 0_{0}), (v_{1}, o_{1})] =[(2,0), (2, 1), (3, 0), 3,)]

You can think of the tuples of elements of the upper right triangle of the antihermitian matrix that specifies the
c_{b, i} coefficients.

coefficient matrix [[c_{0, 0}, -c_{1, 0}, -c_{2, 0}, -c_{3, 0}],

[c_{1,0}, c_{1, 1}, -c_{2, 1}, -c_{3, 1}], [c_{2, O}, c_{2, 1}, c_{2, 2}, -c_{3, 2}], [c_{3, 0},
c_{3,1},c_{3,2},c_{3,3}1]

Since we are working with only non-redundant operators we know c_{i, i} = 0 and any c_{i, j} where i and j
are both in occupied or both in virtual = 0.

Parameters
* parameters — array of parameters for kappa matrix
* num_orbitals - total number of spatial orbitals
* occ — (Optional) indices for doubly occupied sector
* virt — (Optional) indices for virtual sector
Returns: np.ndarray kappa matrix

openfermion.hamiltonians.wigner_seitz_length_scale (wigner_seitz_radius, n_particles,

))))])) dimension)
Function to give length_scale associated with Wigner-Seitz radius.

Parameters
* wigner_seitz_radius (float) - The radius per particle in atomic units.
* n_particles (int)— The number of particles in the simulation cell.
* dimension (int)— The dimension of the system.

Returns length_scale (float) — The length scale for the simulation.

Raises ValueError — System dimension must be a positive integer.

1.2 openfermion.measurements

openfermion.measurements.apply_constraints (operator, n_fermions)
Function to use linear programming to apply constraints.

Parameters

* operator (FermionOperator)— FermionOperator with only 1- and 2-body terms that
we wish to vectorize.

1.2. openfermion.measurements 19

openfermion Documentation, Release 0.11.1.dev

* n_fermions (int)— The number of particles in the simulation.
Returns
modified_operator(FermionOperator) —
The operator with reduced norm that has been modified with equality constraints.

openfermion.measurements.binary partition_iterator (qubit_list, num_iterations=None)
Generator for a list of 2-partitions of N qubits such that all pairs of qubits are split in at least one partition, This
follows a variation on ArXiv:1908.0562 - instead of explicitly partitioning the list based on the binary indices
of the qubits, we repeatedly divide the list in two and then zip it back together.

Parameters
* qubit_1list (1ist) - listof qubits to be partitioned

* num_iterations (int or None)- number of iterations to perform. If None, will be
set to ceil(log2(len(qubit_list)))

Returns partition(iterator of tuples of lists) — the required partitioning

openfermion.measurements.constraint_matrix (n_orbitals, n_fermions)
Function to generate matrix of constraints.

Parameters

* n_orbitals (int)— The number of orbitals in the simulation.

* n_fermions (int)— The number of particles in the simulation.
Returns constraint_matrix(scipy.sparse.coo_matrix) — The matrix of constraints.

openfermion.measurements.linearize_term (term, n_orbitals)
Function to return integer index of term indices.

Parameters
* term (tuple)— The term indices of a one- or two-body FermionOperator.
e n_orbitals (int) - The number of orbitals in the simulation.

Returns index(int) — The index of the term.

openfermion.measurements.one_body fermion_ constraints (n_orbitals, n_fermions)
Generates one-body positivity constraints on fermionic RDMs.

The specific constraints implemented are known positivity constraints on the one-fermion reduced
density matrices. Constraints are generated in the form of FermionOperators whose expectation value
is known to be zero for any N-Representable state. Generators are used for efficiency.
Parameters

* n_orbitals (int)— number of spin-orbitals on which operators act.

* n_fermions (int)— number of fermions in the system.
Yields Constraint is a FermionOperator with zero expectation value.

openfermion.measurements.partition_iterator (qubit_list, partition_size,

num_iterations=None)
Generator for a list of k-partitions of N qubits such that all sets of k qubits are perfectly split in at least one

partition, following ArXiv:1908.05628
Parameters

e qubit_1list (1ist) - list of qubits to be partitioned

20 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* partition_size (int)—the number of sets in the partition.

e num_iterations (int or None) - the number of iterations in the outer iterator. If
None, set to ceil(log2(len(qubit_list)))

Returns partition(iterator of tuples of lists) — the required partitioning

openfermion.measurements.pauli_string_iterator (num_qubits, max_word_size=2)
Generates a set of Pauli strings such that each word of k Pauli operators lies in at least one string.

Parameters
* num_qubits (int)— number of qubits in string
* max_word_size (int)— maximum required word
Returns
pauli_string(iterator of strings) —
iterator over Pauli strings

openfermion.measurements.prony (signal)
Estimates amplitudes and phases of a sparse signal using Prony’s method.

Single-ancilla quantum phase estimation returns a signal g(k)=sum (aj*exp(i*k*phij)), where aj and phij are the
amplitudes and corresponding eigenvalues of the unitary whose phases we wish to estimate. When more than
one amplitude is involved, Prony’s method provides a simple estimation tool, which achieves near-Heisenberg-
limited scaling (error scaling as NA{-1/2}K"{-3/2}).

Parameters signal (1d complex array) - the signal to fit
Returns

amplitudes(list of complex values) — the amplitudes a_i, in descending order by their complex
magnitude phases(list of complex values): the complex frequencies gamma_i,

correlated with amplitudes.

openfermion.measurements.two_body fermion_constraints (n_orbitals, n_fermions)
Generates two-body positivity constraints on fermionic RDMs.

The specific constraints implemented are known positivity constraints on the two-fermion reduced
density matrices. Constraints are generated in the form of FermionOperators whose expectation value
is known to be zero for any N-Representable state. Generators are used for efficiency.
Parameters
* n_orbitals (int)— number of spin-orbitals on which operators act.
* n_fermions (int)— number of fermions in the system.
Yields Constraint is a FermionOperator with zero expectation value.
openfermion.measurements.unlinearize_term (index, n_orbitals)
Function to return integer index of term indices.
Parameters
¢ index (int)— The index of the term.
* n_orbitals (int) - The number of orbitals in the simulation.

Returns ferm(tuple) — The term indices of a one- or two-body FermionOperator.

1.2. openfermion.measurements 21

openfermion Documentation, Release 0.11.1.dev

1.3 openfermion.ops

class openfermion.ops.BinaryCode (encoding, decoding)
Bases: object

The BinaryCode class provides a representation of an encoding-decoding pair for binary vectors of different
lengths, where the decoding is allowed to be non-linear.

As the occupation number of fermionic mode is effectively binary, a length-N vector (v) of binary number can
be utilized to describe a configuration of a many-body fermionic state on N modes. An n-qubit product state
configuration Iw0> Iw1> [w2> ... |wn-1>, on the other hand is described by a length-n binary vector w=(w0,
wl, ..., wn-1). To map a subset of N-Orbital Fermion states to n-qubit states we define a binary code, which
consists of a (here: linear) encoding (e) and a (non-linear) decoding (d), such that for every v from that subset,
w = e(v) is a length-n binary vector with d(w) = v. This can be used to save qubits given a Hamiltonian that
dictates such a subset, otherwise n=N.

Two binary codes (e,d) and (e’,d”) can construct a third code (e”,d”) by two possible operations:

Concatenation: (e¢”,d”) = (e,d) * (¢’,d’) which means ¢”: v’ ->¢’(e(v”’)) and d”: w” ->d(d’ (w”)) where n” =
n’ and N” = N, with n = N’ as necessary condition.

Appendage: (e”,d”) = (e,d) + (¢’,d’) which means €”: (v +V’) ->e(v) + e’ (v’) and d”: (W + w’) -> d(w) + d’(
w’) where the addition is to be understood as appending two vectors together, so N =N’ + Nandn” =n+n’.

Appending codes is particularly useful when considering segment codes or segmented transforms.

A BinaryCode-instance is initialized by BinaryCode(A,d), given the encoding (e) as n x N array or matrix-like
nested lists A, such that e(v) = (A v) mod 2. The decoding d is an array or a list input of length N, which has
entries either of type BinaryPolynomial, or of valid type for an input of the BinaryPolynomial-constructor.

The signs + and *, += and *= are overloaded to implement concatenation and appendage on BinaryCode-objects.

NOTE: multiplication of a BinaryCode with an integer yields a multiple appending of the same code, the
multiplication with another BinaryCode their concatenation.

decoder
list of BinaryPolynomial: Outputs the decoding functions as components.

Type list

encoder
Outputs A, the linear matrix that implements the encoding function.

Type scipy.sparse.csc_matrix

n_modes
Outputs the number of modes.

Type int

n_qubits
Outputs the number of qubits.

Type int

__init__ (encoding, decoding)
Initialization of a binary code.

Parameters
* encoding (np.ndarray or 1list)-nested lists or binary 2D-array

* decoding (array or 1ist)- listof BinaryPolynomial (list or str).

22 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Raises

* TypeError — non-list, array like encoding or decoding, unsuitable BinaryPolynomial
generators,

* BinaryCodeError —in case of decoder/encoder size mismatch or decoder size, qubits
indexed mismatch

class openfermion.ops.BinaryPolynomial (ferm=None)
Bases: object

The BinaryPolynomial class provides an analytic representation of non-linear binary functions. An instance of
this class describes a term of binary variables (variables of the values {0,1}, indexed by integers like w0, w1,
w2 and so on) that is considered to be evaluated modulo 2. This implies the following set of rules:

the binary addition w1l + w1 = 0, binary multiplication w2 * w2 = w2 and power rule w3 * 0 = 1, where raising
to every other integer power than zero reproduces w3.

Of course, we can also add a non-trivial constant, which is 1. Due to these binary rules, every function available
will be a multinomial like e.g.

1+wlw2+wOwl.

These binary functions are used for non-linear binary codes in order to decompress qubit bases back into fermion
bases. In that instance, one BinaryPolynomial object characterizes the occupation of single orbital given a multi-
qubit state in configuration Iw0> Iw1> [w2>

For initialization, the preferred data types is either a string of the multinomial, where each variable and constant
is to be well separated by a whitespace, or in its native form of tuples, 1 + wl w2 + w0 w1 is represented as
[(_SYMBOLIC_ONE,),(1,2),(0,1)]

After initialization,BinaryPolynomial terms can be manipulated with the overloaded signs +, * and ?, ac-
cording to the binary rules mentioned.

Example

bin_fun = BinaryPolynomial ('l + wl w2 + wO wl'")
Equivalently

bin_fun = BinaryPolynomial (1) + BinaryPolynomial ([(1,2), (0,1)1])
Equivalently

bin_fun = BinaryPolynomial ([(_SYMBOLIC_ONE,), (1,2), (0,1)1)

terms
a list of tuples. Each tuple represents a summand of the BinaryPolynomial term and each summand can
contain multiple tuples representing the factors.

Type list

__init__ (term=None)
Initialize the BinaryPolynomial based on term

Parameters term (str, list, tuple)-—used for initializing a BinaryPolynomial
Raises ValueError — when term is not a string,list or tuple

enumerate_qubits ()
Enumerates all qubits indexed in a given BinaryPolynomial.

Returns (list): a list of qubits

evaluate (binary_list)
Evaluates a BinaryPolynomial

1.3. openfermion.ops 23

openfermion Documentation, Release 0.11.1.dev

Parameters binary_ list (list, array, str)-—alistof binary values corresponding
each binary variable (in order of their indices) in the expression

Returns (int, O or 1): result of the evaluation

Raises BinaryPolynomialError — Length of list provided must match the number of
qubits indexed in BinaryPolynomial

classmethod identity ()

Returns multiplicative_identity (BinaryPolynomial) — A symbolic operator u with the property
that u*x = x*u = x for all operators x of the same class.

shift (const)
Shift all qubit indices by a given constant.

Parameters const (int) — the constant to shift the indices by
Raises TypeError — const must be integer
classmethod zero()

Returns additive_identity (BinaryPolynomial) — A symbolic operator o with the property that
o+x = x+0 = x for all operators x of the same class.

class openfermion.ops.BosonOperator (term=None, coefficient=1.0)

Bases: openfermion.ops._symbolic_operator.SymbolicOperator
BosonOperator stores a sum of products of bosonic ladder operators.

In OpenFermion, we describe bosonic ladder operators using the shorthand: ‘i*’ = b dagger i j” = b_j where
‘1’, ‘'] = delta_ij is the commutator.

One can multiply together these bosonic ladder operators to obtain a bosonic term. For instance, 2" 1’ is
a bosonic term which creates at mode 2 and destroys at mode 1. The BosonicOperator class also stores a
coefficient for the term, e.g. ‘3.17 * 2" 1°.

The BosonOperator class is designed (in general) to store sums of these terms. For instance, an instance of
BosonOperator might represent 3.17 2 1 - 66.2 * 8" 7 6" 2 The Bosonic Operator class overloads operations
for manipulation of these objects by the user.

BosonOperator is a subclass of SymbolicOperator. Importantly, it has attributes set as follows:

actions = (1, 0)

action_strings = ('*', '")
action_before_index = False
different_indices_commute = True

See the documentation of SymbolicOperator for more details.

Example

H = (BosonOperator ('0” 3', .5)
+ .5 % BosonOperator ('3 0'))
Equivalently
H2 = BosonOperator ('0” 3', 0.5)
H2 += BosonOperator ('3” 0', 0.5)

Note: Adding BosonOperator is faster using += (as this is done by in-place addition). Specifying the coefficient
during initialization is faster than multiplying a BosonOperator with a scalar.

24

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

action_before_index
Whether action comes before index in string representations.

action_strings
The string representations of the allowed actions.

actions
The allowed actions.

different_indices_commute
Whether factors acting on different indices commute.

is_boson_preserving ()
Query whether the term preserves particle number.

This is equivalent to requiring the same number of raising and lowering operators in each term.

is_normal_ordered()
Return whether or not term is in normal order.

In our convention, ladder operators come first. Note that unlike the Fermion operator, due to the commu-
tation of ladder operators with different indices, the BosonOperator sorts ladder operators by index.

class openfermion.ops.DiagonalCoulombHamiltonian (one_body, two_body, constant=0.0)
Bases: object

Class for storing Hamiltonians of the form
Z qua;aq + Z V},qa};apagaq + constant
p.q b,q
where
e T'is a Hermitian matrix.
* V is a real symmetric matrix.

one_body
The Hermitian matrix 7.

Type ndarray

two_body
The real symmetric matrix V.

Type ndarray

constant
The constant.

Type float

__init__ (omne_body, two_body, constant=0.0)
Initialize self. See help(type(self)) for accurate signature.

class openfermion.ops.FermionOperator (term=None, coefficient=1.0)
Bases: openfermion.ops._symbolic_operator.SymbolicOperator

FermionOperator stores a sum of products of fermionic ladder operators.

In OpenFermion, we describe fermionic ladder operators using the shorthand: ‘q®’ = a“dagger_q ‘q” = a_q
where {‘p"V’, ‘q’} = delta_pq

One can multiply together these fermionic ladder operators to obtain a fermionic term. For instance, 2* 1’ is
a fermion term which creates at orbital 2 and destroys at orbital 1. The FermionOperator class also stores a
coefficient for the term, e.g. ‘3.17 * 2" 1°.

1.3. openfermion.ops 25

openfermion Documentation, Release 0.11.1.dev

The FermionOperator class is designed (in general) to store sums of these terms. For instance, an instance of
FermionOperator might represent 3.17 2 1 - 66.2 * 8" 7 6™ 2 The Fermion Operator class overloads operations
for manipulation of these objects by the user.

FermionOperator is a subclass of SymbolicOperator. Importantly, it has attributes set as follows:

actions = (1, 0)

action_strings = ('*', '")
action_before_index = False
different_indices_commute = False

See the documentation of SymbolicOperator for more details.

Example

ham = (FermionOperator('0” 3', .5)

+ .5 % FermionOperator ('3” 0'))
Equivalently
ham2 = FermionOperator('0” 3', 0.5)
ham2 += FermionOperator('3” 0', 0.5)

Note: Adding FermionOperators is faster using += (as this is done by in-place addition). Specifying the
coefficient during initialization is faster than multiplying a FermionOperator with a scalar.

action_before_index
Whether action comes before index in string representations.

action_strings
The string representations of the allowed actions.

actions
The allowed actions.

different_indices_commute
Whether factors acting on different indices commute.

is_normal_ ordered ()
Return whether or not term is in normal order.

In our convention, normal ordering implies terms are ordered from highest tensor factor (on left) to lowest
(on right). Also, ladder operators come first.

is_two_body number_conserving (check_spin_symmetry=False)
Query whether operator has correct form to be from a molecule.

Require that term is particle-number conserving (same number of raising and lowering operators). Require
that term has 0, 2 or 4 ladder operators. Require that term conserves spin (parity of raising operators equals
parity of lowering operators).

Parameters check_spin_symmetry (bool)— Whether to check if operator conserves spin.

class openfermion.ops.InteractionOperator (constant, one_body_tensor, two_body_tensor)

Bases: openfermion.ops._polynomial_tensor.PolynomialTensor

Class for storing ‘interaction operators’ which are defined to be fermionic operators consisting of one-body and
two-body terms which conserve particle number and spin. The most common examples of data that will use
this structure are molecular Hamiltonians. In principle, everything stored in this class could also be represented
using the more general FermionOperator class. However, this class is able to exploit specific properties of how

26

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

fermions interact to enable more numerically efficient manipulation of the data. Note that the operators stored
in this class take the form:

constcmt—l—g hp,qa:,aq—&— g hp7q7rysa;2agaras.
P.q Pia,Ts

one_body_tensor

The coefficients of the one-body terms
(:math: h_{p, g}). This is an n_qubits x n_qubits
numpy array of floats.

two_body_tensor
The coefficients of the two-body terms (hy 4,r,s). This is an n_qubits x n_qubits x n_qubits x n_qubits
numpy array of floats.

__init__ (constant, one_body_tensor, two_body_tensor)
Initialize the InteractionOperator class.

Parameters

* constant — A constant term in the operator given as a float. For instance, the nuclear
repulsion energy.

* one_body tensor —
The coefficients of the one-body terms (%, ,).
This is an n_qubits x n_qubits numpy array of floats.

* two_body_tensor - The coefficients of the two-body terms (hy ¢). This is an
n_qubits x n_qubits x n_qubits x n_qubits numpy array of floats.

one_body_tensor
The value of the one-body tensor.

two_body_tensor
The value of the two-body tensor.

unique_iter (complex_valued=False)
Iterate all terms that are not in the same symmetry group.

Four point symmetry:

1. pq=qp.

2. pqrs = srqp = qpsr = 1spq.
Eight point symmetry:

1. pq=qp.

2. pqrs = rgps = psrq = Srqp = gpsr = rspq = Spqr = qrsp.
Parameters complex_valued (bool) — Whether the operator has complex coefficients.

Yields tuple[int]

class openfermion.ops.InteractionRDM (one_body_tensor, two_body_tensor)
Bases: openfermion.ops._polynomial_tensor.PolynomialTensor

Class for storing 1- and 2-body reduced density matrices.

1.3. openfermion.ops 27

openfermion Documentation, Release 0.11.1.dev

one_body_tensor
The expectation values <adagger_p a_q>.

two_body tensor
The expectation values <adagger_p a*dagger_q a_r a_s>.

__init__ (one_body_tensor, two_body_tensor)
Initialize the InteractionRDM class.

Parameters
* one_body tensor — Expectation values <a"dagger_p a_q>.
* two_body_tensor — Expectation values <a*dagger_p a*dagger_q a_r a_s>.

expectation (operator)
Return expectation value of an InteractionRDM with an operator.

Parameters operator — A QubitOperator or InteractionOperator.
Returns float — Expectation value
Raises InteractionRDMError — Invalid operator provided.

get_qubit_expectations (qubit_operator)
Return expectations of QubitOperator in new QubitOperator.

Parameters qubit_operator — QubitOperator instance to be evaluated on this Interaction-
RDM.

Returns QubitOperator — QubitOperator with coefficients corresponding to expectation values
of those operators.

Raises InteractionRDMError — Observable not contained in 1-RDM or 2-RDM.

one_body_tensor
The value of the one-body tensor.

two_body tensor
The value of the two-body tensor.

class openfermion.ops.IsingOperator (term=None, coefficient=1.0)

Bases: openfermion.ops._symbolic_operator.SymbolicOperator

The IsingOperator class provides an analytic representation of an Ising-type Hamiltonian, i.e. a sum of product
of Zs.

IsingOperator is a subclass of SymbolicOperator. Importantly, it has attributes set as follows:
actions = (‘Z’) action_strings = (“Z’) action_before_index = True different_indices_commute = True
See the documentation of SymbolicOperator for more details.

action_before_index
Whether action comes before index in string representations.

action_strings
The string representations of the allowed actions.

actions
The allowed actions.

different_indices_commute
Whether factors acting on different indices commute.

28

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

class openfermion.ops.MajoranaOperator (term=None, coefficient=1.0)
Bases: object

A linear combination of products of Majorana operators.

A system of N fermionic modes can be described using 2N Majorana operators 71, . . ., Yo as an alternative to

using N fermionic annihilation operators. The algebra of Majorana operators amounts to the relation
v, v} = vivs + 757 = 2645

Note that this implies v = 1.

The MajoranaOperator class stores a linear combination of products of Majorana operators. Each product is rep-
resented as a tuple of integers representing the indices of the operators. As an example, MajoranaOperator((2,
3, 5), -1.5) initializes an operator with a single term which represents the operator —1.5v2y375. MajoranaOp-
erators can be added, subtracted, multiplied, and divided by scalars. They can be compared for approximate

numerical equality using ==.

terms
A dictionary from term, represented by a tuple of integers,

to the coefficient of the term in the linear combination.

__init__ (term=None, coefficient=1.0)
Initialize a MajoranaOperator with a single term.

Parameters
e term (Tuple[int])— The indices of a Majorana operator term to start off with
e coefficient (complex)— The coefficient of the term

Returns MajoranaOperator

commutes_with (other)
Test commutation with another MajoranaOperator

static from dict (rerms)
Initialize a MajoranaOperator from a terms dictionary.

WARNING: The given dictionary is not validated whatsoever. It’s up to you to ensure that it is properly

formed.
Parameters terms — A dictionary from Majorana term to coefficient

with_basis_rotated_by (transformation_matrix)
Change to a basis of new Majorana operators.

The input to this method is a real orthogonal matrix O. It returns a new MajoranaOperator which is
equivalent to the old one but rewritten in terms of a new basis of Majorana operators. Let the original
Majorana operators be denoted by ~y; and the new operators be denoted by ;. Then they are related by the
equation

Fi =Y 0i;.
J

Parameters transformation_matrix — A real orthogonal matrix representing the basis
transformation.

Returns The rotated operator.

class openfermion.ops.PolynomialTensor (n_body_tensors)
Bases: object

1.3. openfermion.ops 29

openfermion Documentation, Release 0.11.1.dev

Class for storing tensor representations of operators that correspond with multilinear polynomials in the
fermionic ladder operators. For instance, in a quadratic Hamiltonian (degree 2 polynomial) which conserves
particle number, there are only terms of the form a“dagger_p a_q, and the coefficients can be stored in an
n_qubits x n_qubits matrix. Higher order terms would be described with tensors of higher dimension. Note that
each tensor must have an even number of dimensions, since parity is conserved. Much of the functionality of
this class is redudant with FermionOperator but enables much more efficient numerical computations in many
cases, such as basis rotations.

n_qubits
The number of sites on which the tensor acts.
Type int

n_body tensors
A dictionary storing the tensors describing n-body interactions. The keys are tuples that indicate the type of
tensor. For instance, n_body_tensors[(1, 0)] would be an (n_qubits X n_qubits) numpy array, and it could
represent the coefficients of terms of the form a*dagger_i a_j, whereas n_body_tensors[(0, 1)] would be
an array of the same shape, but instead representing terms of the form a_i a*dagger._j.

Type dict

__init__ (n_body_tensors)
Initialize the PolynomialTensor class.

Parameters n_body_tensors (dict)— A dictionary storing the tensors describing n-body
interactions.

constant
The value of the constant term.

projected_n_body_ tensors (selection, exact=False)
Keep only selected elements.

Parameters

* selection (Union[int, Iterable[int])-Ifint, keeps terms with at most (ex-
actly, if exact is True) that many unique indices. If iterable, keeps only terms containing
(all of, if exact is True) the specified indices.

¢ exact (bool)— Whether or not the selection is strict.

rotate_basis (rotation_matrix)
Rotate the orbital basis of the PolynomialTensor.

Parameters rotation_matrix — A square numpy array or matrix having dimensions of
n_qubits by n_qubits. Assumed to be real and invertible.

class openfermion.ops.QuadOperator (term=None, coefficient=1.0)
Bases: openfermion.ops._symbolic_operator.SymbolicOperator

QuadOperator stores a sum of products of canonical quadrature operators.

They are defined in terms of the bosonic ladder operators: q = sqrt{hbar/2}(b+b”") p = -isqrt{hbar/2}(b-b")
where hbar is a constant appearing in the commutator of q and p: [q, p] =1 hbar

In OpenFermion, we describe the canonical quadrature operators acting on quantum modes ‘i’ and ‘j” using the
shorthand: ‘qi’ =q_i ‘pj” = p_j where [‘qi’, ‘pj’] =1 hbar delta_ij is the commutator.

The QuadOperator class is designed (in general) to store sums of these terms. For instance, an instance of
QuadOperator might represent

H = 0.5 * QuadOperator('g0 p5") + 0.3 % QuadOperator ('g0")

30 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Note for a QuadOperator to be a Hamiltonian which is a hermitian operator, the coefficients of all terms must
be real.

QuadOperator is a subclass of SymbolicOperator. Importantly, it has attributes set as follows:

actions = ('gq', 'p")
action_strings = ('g', 'p')
action_before_index = True

different_indices_commute = True

See the documentation of SymbolicOperator for more details.

Example

H = (QuadOperator ('p0 g3', 0.5)
+ 0.6 * QuadOperator ('p3 g0'))
Equivalently
H2 = QuadOperator ('p0 g3', 0.5)
H2 += QuadOperator ('p3 g0', 0.6)

Note: Adding QuadOperator is faster using += (as this is done by in-place addition). Specifying the coefficient
during initialization is faster than multiplying a QuadOperator with a scalar.

action before_ index
Whether action comes before index in string representations.

action_strings
The string representations of the allowed actions.

actions
The allowed actions.

different_indices_commute
Whether factors acting on different indices commute.

is_gaussian()
Query whether the term is quadratic or lower in the quadrature operators.

is_normal_ordered()
Return whether or not term is in normal order.

In our convention, q operators come first. Note that unlike the Fermion operator, due to the commutation
of quadrature operators with different indices, the QuadOperator sorts quadrature operators by index.

class openfermion.ops.QuadraticHamiltonian (hermitian_part, antisymmetric_part=None,

constant=0.0, chemical_potential=0.0)
Bases: openfermion.ops._polynomial_tensor.PolynomialTensor

Class for storing Hamiltonians that are quadratic in the fermionic ladder operators. The operators stored in this
class take the form

1
Z(Mpq - N(Spq)a;aq + B Z(qua;ag + h.c.) + constant
p,q p.q
where
e M is a Hermitian n_qubits X n_qubits matrix.

e A is an antisymmetric n_qubits x n_qubits matrix.

1.3. openfermion.ops 31

openfermion Documentation, Release 0.11.1.dev

* 11 is a real number representing the chemical potential.
* Jpq is the Kronecker delta symbol.

We separate the chemical potential ;o from M so that we can use it to adjust the expectation value of the total
number of particles.

chemical_potential
The chemical potential .

Type float

__init__ (hermitian_part, antisymmetric_part=None, constant=0.0, chemical_potential=0.0)
Initialize the QuadraticHamiltonian class.

Parameters

* hermitian_part (ndarray) — The matrix M, which represents the coefficients of
the particle-number-conserving terms. This is an n_gubits x n_qubits numpy array of
complex numbers.

¢ antisymmetric_part (ndarray) - The matrix A, which represents the coefficients
of the non-particle-number-conserving terms. This is an n_qubits x n_qubits numpy array
of complex numbers.

* constant (float, optional)— A constantterm in the operator.
* chemical_potential (float, optional)— The chemical potential u.

add_chemical_potential (chemical_potential)
Increase (or decrease) the chemical potential by some value.

antisymmetric_part
The antisymmetric part.

combined hermitian_ part
The Hermitian part including the chemical potential.

conserves_particle_number
Whether this Hamiltonian conserves particle number.

diagonalizing_bogoliubov_transform (spin_sector=None)
Compute the unitary that diagonalizes a quadratic Hamiltonian.

Any quadratic Hamiltonian can be rewritten in the form

Z €; b}bj + constant,
J

where the bj- are a new set fermionic creation operators that satisfy the canonical anticommutation relations.
The new creation operators are linear combinations of the original ladder operators. In the most general
case, creation and annihilation operators are mixed together:

af
bl T
a
Sl =w ||,
: a
i
bN
anN

32 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

where W is an N x (2N) matrix. However, if the Hamiltonian conserves particle number then creation
operators don’t need to be mixed with annihilation operators and W only needs to be an N x N matrix:

b} of
by aly

This method returns the matrix W.

Parameters spin_sector (optional str)— An optional integer specifying a spin sector
to restrict to: O for spin-up and 1 for spin-down. Should only be specified if the Hamiltonian
includes a spin degree of freedom and spin-up modes do not interact with spin-down modes.
If specified, the modes are assumed to be ordered so that spin-up orbitals come before spin-
down orbitals.

Returns
orbital_energies(ndarray) A one-dimensional array containing the ¢;

diagonalizing_unitary (ndarray): A matrix representing the transformation W of the
fermionic ladder operators. If the Hamiltonian conserves particle number then this is
N x N; otherwise it is N x 2N. If spin sector is specified, then N here represents the
number of spatial orbitals rather than spin orbitals.

constant(float) The constant

diagonalizing_ circuit ()
Get a circuit for a unitary that diagonalizes this Hamiltonian

This circuit performs the transformation to a basis in which the Hamiltonian takes the diagonal form

Z €; b} b; + constant.
J

Returns circuit_description (list[tuple]) — A list of operations describing the circuit. Each oper-
ation is a tuple of objects describing elementary operations that can be performed in parallel.
Each elementary operation is either the string ‘pht’ indicating a particle-hole transformation
on the last fermionic mode, or a tuple of the form (i, j, 6, ¢), indicating a Givens rotation of
modes 7 and j by angles 6 and .

ground_energy ()
Return the ground energy.

hermitian_part
The Hermitian part not including the chemical potential.

majorana_form ()
Return the Majorana represention of the Hamiltonian.

Any quadratic Hamiltonian can be written in the form
7
3 Z Aji f; fi, + constant
3.k

where the f; are normalized Majorana fermion operators:

(af +a;)

fi =

SRS

fien = —z(al —ay)

1.3. openfermion.ops 33

openfermion Documentation, Release 0.11.1.dev

and A is a (2 * n_qubits) x (2 * n_qubits) real antisymmetric matrix. This function returns the matrix A
and the constant.

orbital_energies (non_negative=False)
Return the orbital energies.

Any quadratic Hamiltonian is unitarily equivalent to a Hamiltonian of the form

Z €; b;f-bj + constant.
J

We call the ¢; the orbital energies. The eigenvalues of the Hamiltonian are sums of subsets of the orbital
energies (up to the additive constant).

Parameters non_negative (bool) — If True, always return a list of orbital energies that are
non-negative. This option is ignored if the Hamiltonian does not conserve particle number,
in which case the returned orbital energies are always non-negative.

Returns
* orbital_energies(ndarray) — A one-dimensional array containing the ¢
¢ constant(float) — The constant

class openfermion.ops.QubitOperator (term=None, coefficient=1.0)
Bases: openfermion.ops._symbolic_operator.SymbolicOperator

A sum of terms acting on qubits, e.g., 0.5 * ‘X0 X5’ + 0.3 * Z1 Z2’.
A term is an operator acting on n qubits and can be represented as:
coefficient * local_operator[0] x ... x local_operator[n-1]

where X is the tensor product. A local operator is a Pauli operator (‘I’, ‘X’, Y’, or ‘Z’) which acts on one qubit.
In math notation a term is, for example, 0.5 * ‘X0 X5’, which means that a Pauli X operator acts on qubit 0 and
5, while the identity operator acts on all other qubits.

A QubitOperator represents a sum of terms acting on qubits and overloads operations for easy manipulation of
these objects by the user.

Note for a QubitOperator to be a Hamiltonian which is a hermitian operator, the coefficients of all terms must
be real.

hamiltonian = 0.5 % QubitOperator ('X0 X5") + 0.3 x QubitOperator ('zZ0")

QubitOperator is a subclass of SymbolicOperator. Importantly, it has attributes set as follows:

actions = ('X', 'y', 'z")
action_strings = ('X', 'Y', '7Z")
action_before_index = True

different_indices_commute = True

See the documentation of SymbolicOperator for more details.

Example

ham = ((QubitOperator ('X0 ¥Y3', 0.5)
+ 0.6 % QubitOperator ('X0 Y3'")))
Equivalently
ham2 = QubitOperator ('X0 Y3', 0.5)
ham2 += 0.6 % QubitOperator ('X0 Y3"'")

34 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Note: Adding QubitOperators is faster using += (as this is done by in-place addition). Specifying the coefficient
during initialization is faster than multiplying a QubitOperator with a scalar.

action before_index
Whether action comes before index in string representations.

action_strings
The string representations of the allowed actions.

actions
The allowed actions.

different_indices_commute
Whether factors acting on different indices commute.

renormalize ()
Fix the trace norm of an operator to 1

class openfermion.ops.SymbolicOperator (term=None, coefficient=1.0)
Bases: object

Base class for FermionOperator and QubitOperator.

A SymbolicOperator stores an object which represents a weighted sum of terms; each term is a product of
individual factors of the form (index, action), where index is a nonnegative integer and the possible values for
action are determined by the subclass. For instance, for the subclass FermionOperator, action can be 1 or 0,
indicating raising or lowering, and for QubitOperator, action is from the set { ‘X, “Y’, “Z’}. The coefficients of
the terms are stored in a dictionary whose keys are the terms. SymbolicOperators of the same type can be added
or multiplied together.

Note: Adding SymbolicOperators is faster using += (as this is done by in-place addition). Specifying the
coefficient during initialization is faster than multiplying a SymbolicOperator with a scalar.

actions
A tuple of objects representing the possible actions. e.g. for FermionOperator, this is (1, 0).

Type tuple

action_strings
A tuple of string representations of actions. These should be in one-to-one correspondence with actions
and listed in the same order. e.g. for FermionOperator, this is (‘*’, **).

Type tuple

action_before_index
A boolean indicating whether in string representations, the action should come before the index.

Type bool

different_indices_commute
A boolean indicating whether factors acting on different indices commute.

Type bool

terms
key (tuple of tuples): A dictionary storing the coefficients of the terms in the operator. The keys are the
terms. A term is a product of individual factors; each factor is represented by a tuple of the form (index,
action), and these tuples are collected into a larger tuple which represents the term as the product of its
factors.

1.3. openfermion.ops 35

openfermion Documentation, Release 0.11.1.dev

Type dict

__init__ (term=None, coefficient=1.0)
Initialize self. See help(type(self)) for accurate signature.

classmethod accumulate (operators, start=None)
Sums over SymbolicOperators.

action_before_index
Whether action comes before index in string representations.

Example: For QubitOperator, the actions are (‘X’, “Y’, ‘Z’) and the string representations look something
like ‘X0 Z2 Y3’. So the action comes before the index, and this function should return True. For Fermion-
Operator, the string representations look like ‘0" 1 2~ 3. The action comes after the index, so this function
should return False.

action_strings
The string representations of the allowed actions.

Returns a tuple containing string representations of the possible actions, in the same order as the actions
property.

actions
The allowed actions.

Returns a tuple of objects representing the possible actions.

compress (abs_tol=1e-08)
Eliminates all terms with coefficients close to zero and removes small imaginary and real parts.

Parameters abs_tol (f1oat)— Absolute tolerance, must be at least 0.0

constant
The value of the constant term.

different_indices_commute
Whether factors acting on different indices commute.

get_operator_groups (num_groups)
Gets a list of operators with a few terms. :param num_groups: How many operators to get in the end. :type
num_groups: int

Returns
operators([self.__class__]) —
A list of operators summing up to self.

get_operators ()
Gets a list of operators with a single term.

Returns operators([self.__class__]) — A generator of the operators in self.
classmethod identity ()

Returns multiplicative_identity (SymbolicOperator) — A symbolic operator u with the property
that u*x = x*u = x for all operators x of the same class.

induced_norm (order=1)
Compute the induced p-norm of the operator.

If we represent an operator as :math: sum_{j} w_j H_j where :math: w_j are scalar coefficients then this
norm is :math: left(sum_{j} | w_j \"p right)frac{1}{p}} where :math: ‘p is the order of the induced norm

Parameters order (int) — the order of the induced norm.

36 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

many_body_order ()
Compute the many-body order of a SymbolicOperator.

The many-body order of a SymbolicOperator is the maximum length of a term with nonzero coefficient.
Returns int
classmethod zero()

Returns additive_identity (SymbolicOperator) — A symbolic operator o with the property that
o+x = x+0 = x for all operators x of the same class.

openfermion.ops.down_index (index)
Function to return down-orbital index given a spatial orbital index.

Parameters index (int) — spatial orbital index
Returns An integer representing the index of the associated spin-down orbital

openfermion.ops.general_basis_change (general_tensor, rotation_matrix, key)
Change the basis of an general interaction tensor.

M’ Mp_1p_2...p_n}=R*Mp_1}_{a_1} R p_2} {a_2}... R*p_n}_{a_n} MM a_la_2...a_n}
RMp_n}_{a_n}*"T... RMp_2}_{a 2}*TR_{p_1}_{a_1}*T

where R is the rotation matrix, M is the general tensor, M’ is the transformed general tensor, and a_k and p_k
are indices. The formula uses the Einstein notation (implicit sum over repeated indices).

In case R is complex, the k-th R in the above formula need to be conjugated if key has a 1 in the k-th place
(meaning that the corresponding operator is a creation operator).

Parameters

* general_tensor — A square numpy array or matrix containing information about a
general interaction tensor.

* rotation_matrix — A square numpy array or matrix having dimensions of n_qubits by
n_qubits. Assumed to be unitary.

* key — A tuple indicating the type of general_tensor. Assumed to be non-empty. For exam-
ple, a tensor storing coefficients of azT,aq would have a key of (1, 0) whereas a tensor storing
coefficients of a;aqara;f would have a key of (1, 0, 0, 1).

Returns transformed_general_tensor — general_tensor in the rotated basis.

openfermion.ops.up_index (index)
Function to return up-orbital index given a spatial orbital index.

Parameters index (int) — spatial orbital index

Returns An integer representing the index of the associated spin-up orbital

1.4 openfermion.transforms

openfermion.transforms.binary_ code_transform (hamiltonian, code)
Transforms a Hamiltonian written in fermionic basis into a Hamiltonian written in qubit basis, via a binary code.

The role of the binary code is to relate the occupation vectors (vO vl v2 ... vN-1) that span the fermionic basis,
to the qubit basis, spanned by binary vectors (w0, wl, w2, ..., wn-1).

The binary code has to provide an analytic relation between the binary vectors (v0O, v1, ..., vN-1) and (w0,
wl, ..., wn-1), and possibly has the property N>n, when the Fermion basis is smaller than the fermionic Fock

1.4. openfermion.transforms 37

openfermion Documentation, Release 0.11.1.dev

space. The binary_code_transform function can transform Fermion operators to qubit operators for custom- and
qubit-saving mappings.

Note: Logic multi-qubit operators are decomposed into Pauli-strings (e.g. CPhase(1,2) =0.5* (1 +Z1 +Z2 -
7172)), which might increase the number of Hamiltonian terms drastically.

Parameters
e hamiltonian (FermionOperator) — the fermionic Hamiltonian

* code (BinaryCode) — the binary code to transform the Hamiltonian

Returns (QubitOperator): the transformed Hamiltonian
Raises
* TypeError —if the hamiltonian is not a FermionOperator or code is not
* a BinaryCode

openfermion.transforms.bravyi_kitaev (operator, n_qubits=None)
Apply the Bravyi-Kitaev transform.

Implementation from arXiv:quant-ph/0003137 and “A New Data Structure for Cumulative Frequency Tables”
by Peter M. Fenwick.

Note that this implementation is equivalent to the one described in arXiv:1208.5986, and is different from the
one described in arXiv:1701.07072. The one described in arXiv:1701.07072 is implemented in OpenFermion
as bravyi_kitaev_tree.

Parameters

* operator (openfermion.ops.FermionOperator)— A FermionOperator to trans-
form.

* n_qubits (int /None) — Can force the number of qubits in the resulting operator above
the number that appear in the input operator.

Returns rransformed_operator — An instance of the QubitOperator class.
Raises ValueError — Invalid number of qubits specified.

openfermion.transforms.bravyi_kitaev_code (n_modes)
The Bravyi-Kitaev transform as binary code. The implementation follows arXiv:1208.5986.

Parameters n_modes (int)— number of modes
Returns (BinaryCode): The Bravyi-Kitaev BinaryCode

openfermion.transforms.bravyi_kitaev_fast (operator)
Find the Pauli-representation of InteractionOperator for Bravyi-Kitaev Super fast (BKSF) algorithm. Pauli-
representation of general FermionOperator is not possible in BKSF. Also, the InteractionOperator given as input
must be Hermitian. In future we might provide a transformation for a restricted set of fermion operator.

Parameters operator — Interaction Operator.
Returns transformed_operator — An instance of the QubitOperator class.
Raises TypeError — If operator is not an InteractionOperator

openfermion.transforms.bravyi kitaev_tree (operator, n_qubits=None)
Apply the “tree” Bravyi-Kitaev transform.

38 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Implementation from arxiv:1701.07072

Note that this implementation is different from the one described in arXiv:quant-ph/0003137. In particular, it
gives different results when the total number of modes is not a power of 2. The one described in arXiv:quant-
ph/0003137 is the same as the one described in arXiv:1208.5986, and it is implemented in OpenFermion under
the name bravyi_kitaev.

Parameters

* operator (openfermion.ops.FermionOperator)— A FermionOperator to trans-
form.

* n_qubits (int /None) — Can force the number of qubits in the resulting operator above
the number that appear in the input operator.

Returns transformed_operator — An instance of the QubitOperator class.
Raises ValueError — Invalid number of qubits specified.

openfermion.transforms.checksum code (n_modes, odd)
Checksum code for either even or odd Hamming weight. The Hamming weight is defined such that it yields the
total occupation number for a given basis state. A Checksum code with odd weight will encode all states with
odd occupation number. This code saves one qubit: n_qubits = n_modes - 1.

Parameters
* n_modes (int)— number of modes

e odd (int or bool)-1 (True) or O (False), if odd, we encode all states with odd Ham-
ming weight

Returns (BinaryCode): The checksum BinaryCode

openfermion.transforms.dissolve (ferm)
Decomposition helper. Takes a product of binary variables and outputs the Pauli-string sum that corresponds to
the decomposed multi-qubit operator.

Parameters term (tuple)— product of binary variables, i.e.: ‘w0 w2 w3’
Returns (QubitOperator): superposition of Pauli-strings
Raises ValueError — if the variable in term is not integer

openfermion.transforms.edit_hamiltonian for_ spin (qubit_hamiltonian, spin_orbital, or-
bital_parity)
Removes the Z terms acting on the orbital from the Hamiltonian.

openfermion.transforms.get_boson_operator (operator, hbar=1.0)
Convert to BosonOperator.

Parameters
* operator — QuadOperator.

* hbar (float) — the value of hbar used in the definition of the commutator [q_i, p_j] =i
hbar delta_ij. By default hbar=1.

Returns boson_operator — An instance of the BosonOperator class.

openfermion.transforms.get_diagonal_coulomb_hamiltonian (fermion_operator,
n_qubits=None, ig-
nore_incompatible_terms=False)
Convert a FermionOperator to a Diagonal CoulombHamiltonian.

Parameters

1.4. openfermion.transforms 39

openfermion Documentation, Release 0.11.1.dev

* fermion_operator (FermionOperator)— The operator to convert.
* n_qubits (int) - Optionally specify the total number of qubits in the system

* ignore_incompatible_terms (bool) — This flag determines the behavior of this
method when it encounters terms that are not represented by the DiagonalCoulombHamil-
tonian class, namely, terms that are not quadratic and not quartic of the form a*dagger_p
a_p a"dagger_q a_q. If set to True, this method will simply ignore those terms. If False,
then this method will raise an error if it encounters such a term. The default setting is False.

openfermion.transforms.get_fermion_ operator (operator)
Convert to FermionOperator.

Returns fermion_operator — An instance of the FermionOperator class.

openfermion.transforms.get_interaction_operator (fermion_operator, n_qubits=None)
Convert a 2-body fermionic operator to InteractionOperator.

This function should only be called on fermionic operators which consist of only a_p”~dagger a_q and
a_p~dagger a_q~dagger a_r a_s terms. The one-body terms are stored in a matrix, one_body[p, q], and the
two-body terms are stored in a tensor, two_body[p, q, 1, s].

Returns interaction_operator — An instance of the InteractionOperator class.
Raises
* TypeError — Input must be a FermionOperator.

* TypeError — FermionOperator does not map to InteractionOperator.

Warning: Even assuming that each creation or annihilation operator appears at most a constant number of
times in the original operator, the runtime of this method is exponential in the number of qubits.

openfermion.transforms.get_interaction_rdm (qubit_operator, n_qubits=None)
Build an InteractionRDM from measured qubit operators.

Returns: An InteractionRDM object.

openfermion.transforms.get_majorana operator (operator: Union[openfermion.ops._polynomial_tensor.PolynomialT
openfermion.ops._diagonal_coulomb_hamiltonian.DiagonalCoulon
openfermion.ops._fermion_operator. FermionOperator])
— openfermion.ops._majorana_operator.MajoranaOperator
Convert to MajoranaOperator.

Uses the convention of even + odd indexing of Majorana modes derived from a fermionic mode:
fermion annhil. c_k -> (gamma_{2k} + 1.j * gamma_{2k+1}) / 2 fermion creation c"_k -> (
gamma_{2k} - 1.j * gamma_{2k+1})/2
Parameters (PolynomialTensor, (operator) - DiagonalCoulombHamiltonian or
FermionOperator): Operator to write as Majorana Operator.
Returns majorana_operator — An instance of the MajoranaOperator class.

Raises TypeError — If operator is not of PolynomialTensor, DiagonalCoulombHamiltonian or
FermionOperator.

40 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

openfermion.transforms.get_molecular_data (interaction_operator, geometry=None,
basis=None, multiplicity=None,
n_electrons=None, reduce_spin=True,

data_directory=None)

Output a MolecularData object generated from an InteractionOperator

Parameters

interaction_operator (InteractionOperator) —two-body interaction opera-
tor defining the “molecular interaction” to be simulated.

geometry (string or list of atoms)-—

basis (string)— String denoting the basis set used to discretize the system.
multiplicity (int)— Spin multiplicity desired in the system.
n_electrons (int)— Number of electrons in the system

reduce_spin (bool) - True if one wishes to perform spin reduction on integrals that are
given in interaction operator. Assumes spatial (x) spin structure generically.

Returns molecule(MolecularData) — Instance that captures the interaction_operator converted into
the format that would come from an electronic structure package adorned with some meta-data
that may be useful.

openfermion.transforms.get_number_ preserving sparse_operator (fermion_op,

num_qubits,
num_electrons,

spin_preserving=False,

refer-

ence_determinant=None,

excita-
tion_level=None)

Initialize a Scipy sparse matrix in a specific symmetry sector.

This method initializes a Scipy sparse matrix from a FermionOperator, explicitly working in a particular particle
number sector. Optionally, it can also restrict the space to contain only states with a particular Sz.

Finally, the Hilbert space can also be restricted to only those states which are reachable by excitations up to a
fixed rank from an initial reference determinant.

Parameters

* fermion_op (FermionOperator) — An instance of the FermionOperator class. It

should not contain terms which do not preserve particle number. If spin_preserving is set
to True it should also not contain terms which do not preserve the Sz (it is assumed that the
ordering of the indices goes alpha, beta, alpha, beta, ...).

num_qubits (int) — The total number of qubits / spin-orbitals in the system.
num_electrons (int)— The number of particles in the desired Hilbert space.

spin_preserving (bool) — Whether or not the constructed operator should be de-
fined in a space which has support only on states with the same Sz value as the refer-
ence_determinant.

reference_determinant (list (bool)) — A list, whose length is equal to
num_qubits, which specifies which orbitals should be occupied in the reference state. If
spin_preserving is set to True then the Sz value of this reference state determines the Sz
value of the symmetry sector in which the generated operator acts. If a value for excita-
tion_level is provided then the excitations are generated with respect to the reference state.
In any case, the ordering of the states in the matrix representation of the operator depends

1.4. openfermion.transforms

41

openfermion Documentation, Release 0.11.1.dev

on reference_determinant and the state corresponding to reference_determinant is the vector
[1.0,0.0,0.0... 0.0]. Can be set to None in order to take the first num_electrons orbitals to
be the occupied orbitals.

* excitation_level (int)— The number of excitations from the reference state which
should be included in the generated operator’s matrix representation. Can be set to None to
include all levels of excitation.

Returns
sparse_op(scipy.sparse.csc_matrix) —
A sparse matrix representation of fermion_op in the basis set by the arguments.

openfermion.transforms.get_quad_operator (operator, hbar=1.0)
Convert to QuadOperator.

Parameters
* operator — BosonOperator.

* hbar (float) — the value of hbar used in the definition of the commutator [q_i, p_j] =1
hbar delta_ij. By default hbar=1.

Returns quad_operator — An instance of the QuadOperator class.

openfermion.transforms.get_quadratic_hamiltonian (fermion_operator, chemi-
cal_potential=0.0, n_qubits=None,
ignore_incompatible_terms=False)
Convert a quadratic fermionic operator to QuadraticHamiltonian.

Parameters
* fermion_operator (FermionOperator)— The operator to convert.

* chemical_potential (float)— A chemical potential to include in the returned oper-
ator

* n_qubits (int) — Optionally specify the total number of qubits in the system

* ignore_incompatible_terms (bool) — This flag determines the behavior of this
method when it encounters terms that are not quadratic that is, terms that are not of the form
adagger_p a_q. If set to True, this method will simply ignore those terms. If False, then
this method will raise an error if it encounters such a term. The default setting is False.

Returns quadratic_hamiltonian — An instance of the QuadraticHamiltonian class.
Raises
* TypeError — Input must be a FermionOperator.

* TypeError — FermionOperator does not map to QuadraticHamiltonian.

Warning: Even assuming that each creation or annihilation operator appears at most a constant number of
times in the original operator, the runtime of this method is exponential in the number of qubits.

openfermion.transforms.get_sparse_operator (operator, n_qubits=None, trunc=None,

hbar=1.0)
Map an operator to a sparse matrix.

If the input is not a QubitOperator, the Jordan-Wigner Transform is used.

Parameters

42 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* operator — Currently supported operators include: FermionOperator, QubitOperator, Di-
agonalCoulombHamiltonian, PolynomialTensor, BosonOperator, QuadOperator.

* n_qubits (int) — Number qubits in the system Hilbert space. Applicable only to
fermionic systems.

* trunc (int) — The size at which the Fock space should be truncated. Applicable only to
bosonic systems.

* hbar (float) — the value of hbar to use in the definition of the canonical commutation
relation [q_i, p_j] = delta_{ij} i hbar. Applicable only to the QuadOperator.

openfermion.transforms.interleaved_code (modes)
Linear code that reorders orbitals from even-odd to up-then-down. In up-then-down convention, one can append
two instances of the same code ‘c’ in order to have two symmetric subcodes that are symmetric for spin-up and
-down modes: ‘ ¢ + ¢ ‘. In even-odd, one can concatenate with the interleaved_code to have the same result:’
interleaved_code * (c + ¢)’. This code changes the order of modes from (0, 1, 2, ... , modes-1) to (0, modes/2,
1 modes/2+1, ... , modes-1, modes/2 - 1). n_qubits = n_modes.

Args: modes (int): number of modes, must be even
Returns (BinaryCode): code that interleaves orbitals

openfermion.transforms. jordan_wigner (operator)
Apply the Jordan-Wigner transform to a FermionOperator, InteractionOperator, or DiagonalCoulombHamilto-
nian to convert to a QubitOperator.

Operators are mapped as follows: a_j*dagger ->7 _0.. Z_{j-1} X_j-iY_j)/2a_j->7Z 0. Z_{j-1} Xj+
iY_j)/2

Returns transformed_operator — An instance of the QubitOperator class.

Warning: The runtime of this method is exponential in the maximum locality of the original FermionOp-
erator.

Raises TypeError — Operator must be a FermionOperator, DiagonalCoulombHamiltonian, or In-
teractionOperator.

openfermion.transforms. jordan_wigner_code (n_modes)
The Jordan-Wigner transform as binary code.
Parameters n_modes (int)— number of modes
Returns (BinaryCode): The Jordan-Wigner BinaryCode

openfermion.transforms.linearize_decoder (matrix)
Outputs linear decoding function from input matrix

Parameters matrix (np.ndarray or 1ist) — list of lists or 2D numpy array to derive the
decoding function from

Returns (list): list of BinaryPolynomial

openfermion.transforms.parity_code (n_modes)
The parity transform (arXiv:1208.5986) as binary code. This code is very similar to the Jordan-Wigner trans-
form, but with long update strings instead of parity strings. It does not save qubits: n_qubits = n_modes.

Parameters n_modes (int)— number of modes

Returns (BinaryCode): The parity transform BinaryCode

1.4. openfermion.transforms 43

openfermion Documentation, Release 0.11.1.dev

openfermion.transforms.project_onto_sector (operator, qubits, sectors)
Remove qubit by projecting onto sector.

Takes a QubitOperator, and projects out a list of qubits, into either the +1 or -1 sector. Note - this requires
knowledge of which sector we wish to project into.

Parameters
* operator — the QubitOperator to work on
* qubits — alist of indices of qubits in operator to remove

* sectors - for each qubit, whether to project into the O subspace (<Z>=1) or the 1 subspace
(<Z>=-1).

Returns projected_operator — the resultant operator
Raises
* TypeError — operator must be a QubitOperator.
* TypeError — qubits and sector must be an array-like.
* ValueError — If qubits and sectors have different length.
* ValueError — If sector are not specified as 0 or 1.

openfermion.transforms.projection_error (operator, qubits, sectors)
Calculate the error from the project_onto_sector function.

Parameters
* operator — the QubitOperator to work on
* qubits —alist of indices of qubits in operator to remove

* sectors —for each qubit, whether to project into the 0 subspace (<Z>=1) or the 1 subspace
(<Z>=-1).

Returns error — the trace norm of the removed term.
Raises
* TypeError — operator must be a QubitOperator.
* TypeError — qubits and sector must be an array-like.
* ValueError — If qubits and sectors have different length.
* ValueError — If sector are not specified as O or 1.

openfermion.transforms.reverse_jordan_wigner (qubit_operator, n_qubits=None)
Transforms a QubitOperator into a FermionOperator using the Jordan-Wigner transform.

Operators are mapped as follows: Z_j -> I - 2 ardagger_j a_j X_j -> (a’dagger_j+a_j) Z_{j-1} Z_{j-2} .. Z_0
Y_j->i(atdagger_j-a_j)Z_{j-1}Z_{j-2}..Z_0

Parameters
* qubit_operator — the QubitOperator to be transformed.

* n_qubits — the number of qubits term acts on. If not set, defaults to the maximum qubit
number acted on by term.

Returns transformed_term — An instance of the FermionOperator class.
Raises

* TypeError — Input must be a QubitOperator.

44 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* TypeError — Invalid number of qubits specified.
* TypeError — Pauli operators must be X, Y or Z.

openfermion.transforms.rotate_qubit_by_ pauli (gop, pauli, angle)
Rotate qubit operator by exponential of Pauli.

Perform the rotation e”{-i theta * P}Qe”{i theta * P} on a qubitoperator Q and a Pauli operator P.
Parameters
* gop — the QubitOperator to be rotated

* pauli - a single Pauli operator - a QubitOperator with a single term, and a coefficient
equal to 1.

* angle - the angle to be rotated by.
Returns
rotated_op - the rotated QubitOperator following the above formula.
Raises
* TypeError — qop must be a QubitOperator

* TypeError — pauli must be a Pauli Operator (QubitOperator with single term and coeffi-
cient equal to 1).

openfermion.transforms.symmetric_ordering (operator, ignore_coeff=True, ig-

nore_identity=True)
Apply the symmetric ordering to a BosonOperator or QuadOperator.

The symmetric ordering is performed by applying McCoy’s formula directly to polynomial terms of quadrature
operators:

q*m p™n -> (1/ 2*n) sum_{r=0}"{n} Binomial(n, r) g¢*r p*m gq*{n-r}

Note: in general, symmetric ordering is performed on a single term containing the tensor product of various
operators. However, this function can also be applied to a sum of these terms, and the symmetric product is
distributed over the summed terms.

In this case, Hermiticity cannot be guaranteed - as such, by default term coefficients and identity operators are
ignored. However, this behavior can be modified via keyword arguments describe below if necessary.

Parameters
* operator — either a BosonOperator or QuadOperator.

* ignore_coeff (bool)— By default, the coefficients for each term are ignored; S(a ¢*m
p*n) = S(g”m p”n), and the returned operator is always Hermitian. If set to False, then
instead the coefficients are taken into account; S(q“m p”n) = a S(q”m p”n). In this case, if a
is a complex coefficient, it is not guaranteed that the the returned operator will be Hermitian.

* ignore_identity (bool) — By default, identity terms are ignore; S(I) = 0. If set to
False, then instead S(I) = I.

Returns transformed_operator — an operator of the same class as in the input.

Warning: The runtime of this method is exponential in the maximum locality of the original operator.

1.4. openfermion.transforms 45

openfermion Documentation, Release 0.11.1.dev

openfermion.transforms.symmetry_ conserving bravyi_kitaev (fermion_hamiltonian,
active_orbitals, ac-

tive_fermions)
Returns the qubit Hamiltonian for the fermionic Hamiltonian supplied, with two qubits removed using conser-

vation of electron spin and number, as described in arXiv:1701.08213.
Parameters

* fermion_hamiltonian — A fermionic hamiltonian obtained using OpenFermion. An
instance of the FermionOperator class.

* active_orbitals — Int type object. The number of active orbitals being considered for
the system.

* active_fermions — Int type object. The number of active fermions being considered
for the system (note, this is less than the number of electrons in a molecule if some orbitals
have been assumed filled).

Returns
qubit_hamiltonian —

The qubit Hamiltonian corresponding to the supplied fermionic Hamiltonian, with two
qubits removed using spin symmetries.

Warning: Reorders orbitals from the default even-odd ordering to all spin-up orbitals, then all spin-down
orbitals.

Raises
* ValueError if fermion_hamiltonian isn’t of the type
* FermionOperator, or active_orbitals isn’t an integer,
* or active_fermions isn’t an integer.
Notes: This function reorders the spin orbitals as all spin-up, then all spin-down. It uses the OpenFermion
bravyi_kitaev_tree mapping, rather than the bravyi-kitaev mapping. Caution advised when using with a

Fermi-Hubbard Hamiltonian; this technique correctly reduces the Hamiltonian only for the lowest energy
even and odd fermion number states, not states with an arbitrary number of fermions.

openfermion.transforms.verstraete_cirac_2d_square (operator, x_dimension,
y_dimension,
add_auxiliary_hamiltonian=True,

snake=False)
Apply the Verstraete-Cirac transform on a 2-d square lattice.

Note that this transformation adds one auxiliary fermionic mode for each mode already present, and hence it
doubles the number of qubits needed to represent the system.

Currently only supports even values of x_dimension and only works for spinless models.
Parameters
* operator (FermionOperator)— The operator to transform.
* x_dimension (int)— The number of columns of the grid.

* y_dimension (int)— The number of rows of the grid.

46 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* snake (bool, optional)-Indicates whether the fermions are already ordered accord-
ing to the 2-d “snake” ordering. If False, we assume they are in “lexicographic” order by
row and column index. Default is False.

Returns transformed_operator — A QubitOperator.

openfermion.transforms.weight_one_binary addressing_code (exponent)
Weight-1 binary addressing code (arXiv:1712.07067). This highly non-linear code works for a number of modes
that is an integer power of two. It encodes all possible vectors with Hamming weight 1, which corresponds to all
states with total occupation one. The amount of qubits saved here is maximal: for a given argument ‘exponent’,
we find n_modes = 2 ” exponent, n_qubits = exponent.

Note: This code is highly non-linear and might produce a lot of terms.

Parameters exponent (int)— exponent for the number of modes n_modes = 2 * exponent

Returns (BinaryCode): the weight one binary addressing BinaryCode

openfermion.transforms.weight_one_segment_code ()
Weight-1 segment code (arXiv:1712.07067). Outputs a 3-mode, 2-qubit code, which encodes all the vectors
(states) with Hamming weight (occupation) O and 1. n_qubits = 2, n_modes = 3. A linear amount of qubits can
be saved appending several instances of this code.

Note: This code is highly non-linear and might produce a lot of terms.

Returns (BinaryCode): weight one segment code

openfermion.transforms.weight_two_segment_code ()
Weight-2 segment code (arXiv:1712.07067). Outputs a 5-mode, 4-qubit code, which encodes all the vectors
(states) with Hamming weight (occupation) 2 and 1. n_qubits =4, n_modes = 5. A linear amount of qubits can
be saved appending several instances of this code.

Note: This code is highly non-linear and might produce a lot of terms.

Returns (BinaryCode): weight-2 segment code

openfermion.transforms.weyl_ polynomial_quantization (polynomial)
Apply the Weyl quantization to a phase space polynomial.

The Weyl quantization is performed by applying McCoy’s formula directly to a polynomial term of the form
q*m p”n:

q”m p”*n -> (1/2*n) sum_{r=0}"*{n} Binomial(n, r) hat{q}”r hat{p}"m q*{n-r}
where q and p are phase space variables, and hat{q} and hat{p} are quadrature operators.

The input is provided in the form of a string, for example

weyl_polynomial_quantization('g0”2 p0”3 gl”3")

where ‘q’ or ‘p’ is the phase space quadrature variable, the integer directly following is the mode it is with
respect to, and ‘A2’ is the polynomial power.

Parameters polynomial (str) — polynomial function of q and p of the form ‘qi”m pj*n ...’
where i,j are the modes, and m, n the powers.

1.4. openfermion.transforms 47

openfermion Documentation, Release 0.11.1.dev

Returns QuadOperator — the Weyl quantization of the phase space function.

Warning: The runtime of this method is exponential in the maximum locality of the original operator.

1.5 openfermion.utils

class openfermion.utils.Davidson (linear_operator, linear_operator_diagonal, options=None)
Davidson algorithm to get the n states with smallest eigenvalues.

__init__ (linear_operator, linear_operator_diagonal, options=None)
Parameters

* linear_operator (scipy.sparse.linalg.LinearOperator) — The linear
operator which defines a dot function when applying on a vector.

* linear operator_diagonal (numpy.ndarray) — The linear operator’s diago-
nal elements.

* options (DavidsonOptions) — Iteration options.
get_lowest_n (n_lowest=1, initial_guess=None, max_iterations=None)

Returns n smallest eigenvalues and corresponding eigenvectors for linear operator.

Parameters

* n (int)— The number of states corresponding to the smallest eigenvalues and associated
eigenvectors for the linear_operator.

e initial_guess (numpy.ndarray [complex]) — Initial guess of eigenvectors as-
sociated with the n smallest eigenvalues.

* max_iterations (int)— Max number of iterations when not converging.
Returns

success(bool) —

Indicates whether it converged, i.e. max elementwise error is smaller than eps.

eigen_values(numpy.ndarray[complex]): The smallest n eigenvalues.
eigen_vectors(numpy.ndarray[complex]): The smallest n eigenvectors

corresponding with those eigen values.
class openfermion.utils.DavidsonOptions (max_subspace=100, max_iterations=300, eps=1e-

06, real_only=False)
Davidson algorithm iteration options.

__init_ (max_subspace=100, max_iterations=300, eps=1e-06, real_only=False)
Parameters
* max_subspace (int)— Max number of vectors in the auxiliary subspace.
* max_iterations (int)- Max number of iterations.

* eps (float) — The max error for eigen vector error’s elements during iterations: lin-
ear_operator * v - v * lambda.

48 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* real_only (bool) — Desired eigenvectors are real only or not. When one specifies
the real_only to be true but it only has complex ones, no matter it converges or not, the
returned vectors will be complex.

set_dimension (dimension)

Parameters dimension (int) — Dimension of the matrix, which sets a upper limit on the
work space.

class openfermion.utils.Grid (dimensions, length, scale)
A multi-dimension grid of points with an assigned length scale.

This grid acts as a helper class for parallelpiped super cells. It tracks a mapping from indices to grid points
and stores the associated reciprocal lattice with respect to the original real-space lattice. This enables
calculations with non-trivial unit cells.

dimensions
Number of spatial dimensions the grid occupys

Type int

length
d-length tuple specifying number of points along each dimension.

Type tuple of ints

shifts
Integer shifts in position to center grid.

Type list of ints

scale
Vectors defining the super cell being simulated, vectors are stored as columns in the matrix.

Type ndarray

volume
Total volume of the supercell parallelpiped.

Type float

num_points
Total number of points in the grid.

Type int

reciprocal_scale
Vectors defining the reciprocal lattice. The vectors are stored as the columns in the matrix.

Type ndarray
__init__ (dimensions, length, scale)
Parameters
* dimensions (int)— The number of dimensions the grid lives in.

* length (int or tuple) — The number of points along each grid axis that will be
taken in both reciprocal and real space. If tuple, it is read for each dimension, otherwise
assumed uniform.

* scale (float or ndarray) - The total length of each grid dimension. If a float is
passed, the uniform cubic unit cell is assumed. For an ndarray, dimensions independent
vectors of the correct dimension must be passed. We assume column vectors define the
supercell vectors.

1.5. openfermion.utils 49

openfermion Documentation, Release 0.11.1.dev

all_points_indices ()
Returns iterable[tuple[int]] — The index-coordinate tuple of each point in the grid.

grid_indices (qubit_id, spinless)
This function is the inverse of orbital_id.

Parameters
e qubit_id (int) - The tensor factor to map to grid indices.
* spinless (bool)— Whether to use the spinless model or not.
Returns grid_indices (numpy.ndarray(int]) — The location of the qubit on the grid.
index_to_momentum_ints (index)
Parameters index (tuple)— d-dimensional tuple specifying index in the grid
Returns Integer momentum vector
momentum _ints_to_index (momentum_ints)
Parameters momentum_ints (tuple)— d-dimensional tuple momentum integers
Returns d-dimensional tuples of indices
momentum_ints_to_value (momentum_ints, periodic=True)
Parameters
* momentum_ints (tuple)— d-dimensional tuple momentum integers
* periodic (bool) — Alias the momentum
Returns ndarray containing the momentum vector.

momentum_vector (momentum_indices, periodic=True)
Given grid point coordinate, return momentum vector with dimensions.

Parameters

* momentum_indices (11ist) - integers giving momentum indices. Allowed values are
ints in [0, grid_length).

* periodic (bool)— Wrap the momentum indices according to periodicity
* Returns -
momentum_vector: A numpy array giving the momentum vector with dimensions.

orbital_id (grid_coordinates, spin=None)
Return the tensor factor of a orbital with given coordinates and spin.

Parameters

* grid_coordinates — List or tuple of ints giving coordinates of grid element. Accept-
able to provide an int(instead of tuple or list) for 1D case.

* spin (bool)-0means spin down and 1 means spin up. If None, assume spinless model.
Returns fensor_factor (int) — tensor factor associated with provided orbital label.

position_vector (position_indices)
Given grid point coordinate, return position vector with dimensions.

Parameters position_indices (int/iterable[int]) - List or tuple of integers giv-
ing grid point coordinate. Allowed values are ints in [0, grid_length).

50 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Returns position_vector (numpy.ndarray[float])
volume_scale ()
Returns float — The volume of a length-scale hypercube within the grid.

class openfermion.utils.HubbardSquareLattice (x_dimension, y_dimension, n_dofs=1, spin-

less=False, periodic=True)
A square lattice for a Hubbard model.

Valid edge types are:
* ‘onsite’
* ‘horizontal_neighbor’
* ‘vertical_neighbor’
* ‘neighbor’: union of ‘horizontal_neighbor’ and ‘vertical_neighbor’
* ‘diagonal_neighbor’
__init__ (x_dimension, y_dimension, n_dofs=1, spinless=False, periodic=True)
Parameters
* x_dimension (int)— The width of the grid.
e y_dimension (int)— The height of the grid.

* n_dofs (int, optional)- The number of degrees of freedom per site (and spin if
applicable). Defaults is 1.

e periodic (bool, optional) - If True, add periodic boundary conditions. Default
is True.

* spinless (bool, optional)-If True, return a spinless Fermi-Hubbard model. De-
fault is False.

delta_mag (X, Y, by_index=False)
The distance between sites X and Y in each dimension.

edge_types
The types of edges that a term could correspond to.

Examples include ‘onsite’, ‘neighbor’, ‘diagonal_neighbor’, etc.

n_dofs
The number of degrees of freedom per site (and spin if applicable).

n_horizontal_neighbor_pairs (ordered=True)
Number of horizontally neighboring (unordered) pairs of sites.

n_neighbor_pairs (ordered=True)
Number of neighboring (unordered) pairs of sites.

n_sites
The number of sites in the lattice.

n_vertical_neighbor_pairs (ordered=True)
Number of vertically neighboring (unordered) pairs of sites.

onsite_edge_types
The edge types that connect sites to themselves.

site_pairs_iter (edge_type, ordered=True)
Iterable over pairs of sites corresponding to the given edge type.

1.5. openfermion.utils 51

openfermion Documentation, Release 0.11.1.dev

spinless
Whether or not the fermion has spin (False if so).

to_site_index (site)
The index of a site.

class openfermion.utils.LinearQubitOperator (qubit_operator, n_qubits=None)

A LinearOperator implied from a QubitOperator.

The idea is that a single i_th qubit operator, O_i, is a 2-by-2 matrix, to be applied on a vector of length n_hilbert
/ 2™, performs permutations and/ or adds an extra factor for its first half and the second half, e.g. a Z operator
keeps the first half unchanged, while adds a factor of -1 to the second half, while an I keeps it both components
unchanged.

Note that the vector length is n_hilbert / 2/, therefore when one works on i monotonically (in increasing order),
one keeps splitting the vector to the right size and then apply O_i on them independently.

Also note that operator O_i, is an envelop operator for all operators after it, i.e. {O_j|j > i}, which implies
that starting with i = 0, one can split the vector, apply O_i, split the resulting vector (cached) again for the next
operator.

__init__ (qubit_operator, n_qubits=None)
Parameters
* qubit_operator (QubitOperator)— A qubit operator to be applied on vectors.

* n_qubits (int) - The total number of qubits

class openfermion.utils.LinearQubitOperatorOptions (processes=10, pool=None)

Options for LinearQubitOperator.
__init__ (processes=10, pool=None)
Parameters
* processes (int)— Number of processors to use.
e pool (multiprocessing.Pool)— A pool of workers.

get_pool (num=None)
Gets a pool of workers to do some parallel work.

pool will be cached, which implies that one should be very clear how many processes one needs, as it’s
allocated at most once. Subsequent calls of get_pool() will reuse the cached pool.

Parameters num (int)— Number of workers one needs.
Returns pool(multiprocessing.Pool) — A pool of workers.

get_processes (num)
Number of real processes to use.

class openfermion.utils.ParallelLinearQubitOperator (qubit_operator, n_qubits=None,

options=None)
A LinearOperator from a QubitOperator with multiple processors.

__init__ (qubit_operator, n_qubits=None, options=None)
Parameters
* qubit_operator (QubitOperator)— A qubit operator to be applied on vectors.
* n_qubits (int) — The total number of qubits

* options (LinearQubitOperatorOptions)— Options for the LinearOperator.

52

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

class openfermion.utils.QubitDavidson (qubit_operator, n_qubits=None, options=None)
Davidson algorithm applied to a QubitOperator.

__init__ (qubit_operator, n_qubits=None, options=None)
Parameters

* qubit_operator (QubitOperator)— A qubit operator which is a linear operator
as well.

* n_qubits (int) - Number of qubits.
* options (DavidsonOptions) — Iteration options.

class openfermion.utils.SparseDavidson (sparse_matrix, options=None)
Davidson algorithm for a sparse matrix.

__dinit__ (sparse_matrix, options=None)
Parameters
* sparse_matrix (scipy.sparse.spmatrix)— A sparse matrix in scipy.
* options (DavidsonOptions) — Iteration options.

class openfermion.utils.Spin
An enumeration.

class openfermion.utils.SpinPairs
The spin orbitals corresponding to a pair of spatial orbitals.

openfermion.utils.amplitude damping channel (density_matrix, probability, target qubit,

transpose="False)
Apply an amplitude damping channel

Applies an amplitude damping channel with a given probability to the target qubit in the density_matrix.
Parameters
* density_matrix (numpy.ndarray)— Density matrix of the system
* probability (float) - Probability error is applied p in [0, 1]
* target_qubit (int) - target for the channel error.

* transpose (bool)— Conjugate transpose channel operators, useful for acting on Hamil-
tonians in variational channel state models

Returns
new_density_matrix(numpy.ndarray) —
Density matrix with the channel applied.

openfermion.utils.anticommutator (operator_a, operator_b)
Compute the anticommutator of two operators.

Parameters operator_b (operator_a,) — Operators in anticommutator. Any operators are
accepted so long as implicit addition and multiplication are supported; e.g. QubitOperators,
FermionOperators, BosonOperators, or Scipy sparse matrices. 2D Numpy arrays are also sup-
ported.

Raises TypeError — operator_a and operator_b are not of the same type.

openfermion.utils.bch_expand (*ops, **kwargs)
Compute log[e?{x_1} ... e {x_N}] using the BCH formula.

This implementation is explained in arXiv:1712.01348.

1.5. openfermion.utils

53

openfermion Documentation, Release 0.11.1.dev

Parameters

* ops — A sequence of operators of the same type for which multiplication and addition are
supported. For instance, QubitOperators, FermionOperators, or Scipy sparse matrices.

* arguments (keyword) —

order(int): The max degree of monomial with respect to X and Y to truncate the BCH
expansions. Defaults to 6

Returns The truncated BCH operator.
Raises
* ValueError — invalid order parameter.
* TypeError — operator types are not all the same.

openfermion.utils.boson_ladder_sparse (n_modes, mode, ladder_type, trunc)
Make a matrix representation of a singular bosonic ladder operator in the Fock space.

Since the bosonic operator lies in an infinite Fock space, a truncation value needs to be provide so that a sparse
matrix of finite size can be returned.

Parameters
* n_modes (int)— Number of modes in the system Hilbert space.
* mode (int)— The mode the ladder operator targets.

* ladder_type (int) — This is a nonzero integer. O indicates a lowering operator, 1 a
raising operator.

* trunc (int) — The size at which the Fock space should be truncated when returning the
matrix representing the ladder operator.

Returns The corresponding trunc x trunc Scipy sparse matrix.

openfermion.utils.boson_operator_sparse (operator, trunc, hbar=1.0)
Initialize a Scipy sparse matrix in the Fock space from a bosonic operator.

Since the bosonic operators lie in an infinite Fock space, a truncation value needs to be provide so that a sparse
matrix of finite size can be returned.

Parameters
* operator — One of either BosonOperator or QuadOperator.

* trunc (int) — The size at which the Fock space should be truncated when returning the
matrix representing the ladder operator.

* hbar (float) — the value of hbar to use in the definition of the canonical commutation
relation [q_i, p_j] = delta_{ij} i hbar. This only applies if calcualating the sparse represen-
tation of a quadrature operator.

Returns The corresponding Scipy sparse matrix of size [trunc, trunc].

openfermion.utils.chemist_ordered (fermion_operator)
Puts a two-body fermion operator in chemist ordering.

The normal ordering convention for chemists is different. Rather than ordering the two-body term as physicists
do, as atafaa the chemist ordering of the two-body term is afaa’a

TODO: This routine can be made more efficient.

Parameters fermion_operator (FermionOperator) — a fermion operator guarenteed to
have number conserving one- and two-body fermion terms only.

54 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Returns
chemist_ordered_operator (FermionOperator) —
the input operator ordered in the chemistry convention.
Raises OperatorSpecificationError — Operator is not two-body number conserving.

openfermion.utils.commutator (operator_a, operator_b)
Compute the commutator of two operators.

Parameters operator_b (operator_a,) — Operators in commutator. Any operators are ac-
cepted so long as implicit subtraction and multiplication are supported; e.g. QubitOperators,
FermionOperators, BosonOperators, or Scipy sparse matrices. 2D Numpy arrays are also sup-
ported.

Raises TypeError — operator_a and operator_b are not of the same type.

openfermion.utils.count_qubits (operator)
Compute the minimum number of qubits on which operator acts.

Parameters operator — FermionOperator, QubitOperator, DiagonalCoulombHamiltonian, or
PolynomialTensor.

Returns num_qubits (int) — The minimum number of qubits on which operator acts.
Raises TypeError — Operator of invalid type.

openfermion.utils.dephasing channel (density_matrix, probability, target_qubit, trans-
pose=False)
Apply a dephasing channel

Applies an amplitude damping channel with a given probability to the target qubit in the density_matrix.
Parameters
* density_matrix (numpy.ndarray) - Density matrix of the system
* probability (float) — Probability error is applied p in [0, 1]
* target_qubit (int) — target for the channel error.

* transpose (bool)— Conjugate transpose channel operators, useful for acting on Hamil-
tonians in variational channel state models

Returns
new_density_matrix (numpy.ndarray) —
Density matrix with the channel applied.

openfermion.utils.depolarizing channel (density_matrix, probability, target_qubit, trans-
pose=False)
Apply a depolarizing channel

Applies an amplitude damping channel with a given probability to the target qubit in the density_matrix.
Parameters
* density_matrix (numpy.ndarray)— Density matrix of the system
* probability (f1oat) — Probability error is applied p in [0, 1]

* target_qubit (int/str) — target for the channel error, if given special value “all”,
then a total depolarizing channel is applied.

* transpose (bool) — Dummy parameter to match signature of other channels but depo-
larizing channel is symmetric under conjugate transpose.

1.5. openfermion.utils 55

openfermion Documentation, Release 0.11.1.dev

Returns
new_density_matrix (numpy.ndarray) —
Density matrix with the channel applied.

openfermion.utils.double_commutator (opl, op2, op3, indices2=None, in-
dices3=None, is_hopping_operator2=None,

is_hopping_operator3=None)
Return the double commutator [op1, [op2, op3]].

Parameters

* op2, op3(opl,)-operators for the commutator. All three operators must be of the same
type.

* indices3 (indices2,) - The indices op2 and op3 act on.

* is_hopping_operator2 (bool)— Whether op2 is a hopping operator.

* is_hopping_operator3 (bool)— Whether op3 is a hopping operator.
Returns The double commutator of the given operators.

openfermion.utils.eigenspectrum (operator, n_qubits=None)
Compute the eigenspectrum of an operator.

WARNING: This function has cubic runtime in dimension of Hilbert space operator, which might be expo-
nential.

NOTE: This function does not currently support QuadOperator and BosonOperator.

Parameters

* operator — QubitOperator, InteractionOperator, FermionOperator, PolynomialTensor, or
InteractionRDM.

* n_qubits (int)— number of qubits/modes in operator. if None, will be counted.
Returns spectrum — dense numpy array of floats giving eigenspectrum.
openfermion.utils.error_bound (terms, tight=False)
Numerically upper bound the error in the ground state energy for the second order Trotter-Suzuki expansion.
Parameters
* terms — a list of single-term QubitOperators in the Hamiltonian to be simulated.

* tight — whether to use the triangle inequality to give a loose upper bound on the error
(default) or to calculate the norm of the error operator.

Returns A float upper bound on norm of error in the ground state energy.

Notes: follows Poulin et al.’s work in ‘“The Trotter Step Size Required for Accurate Quantum Simulation of
Quantum Chemistry”. In particular, Equation 16 is used for a loose upper bound, and the norm of Equation
9 is calculated for a tighter bound using the error operator from error_operator.

Possible extensions of this function would be to get the expectation value of the error operator with the
Hartree-Fock state or CISD state, which can scalably bound the error in the ground state but much more
accurately than the triangle inequality.

openfermion.utils.error_operator (ferms, series_order=2)
Determine the difference between the exact generator of unitary evolution and the approximate generator given
by Trotter-Suzuki to the given order.

56 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Parameters
* terms — a list of QubitTerms in the Hamiltonian to be simulated.

* series_order - the order at which to compute the BCH expansion. Only the second
order formula is currently implemented (corresponding to Equation 9 of the paper).

Returns

The difference between the true and effective generators of time evolution for a single
Trotter step.

Notes: follows Equation 9 of Poulin et al.’s work in “The Trotter Step Size Required for Accurate Quan-

tum Simulation of Quantum Chemistry”.
openfermion.utils.expectation (operator, state)
Compute the expectation value of an operator with a state.
Parameters

* operator (scipy.sparse.spmatrix or scipy.sparse.linalg.
LinearOperator) — The operator whose expectation value is desired.

* state (numpy.ndarray or scipy.sparse.spmatrix)— A numpy array rep-
resenting a pure state or a sparse matrix representing a density matrix. If operator is a
LinearOperator, then this must be a numpy array.

Returns A complex number giving the expectation value.
Raises ValueError — Input state has invalid format.

openfermion.utils.expectation_computational_basis_state (operartor, computa-
)) tional_basis_state)
Compute expectation value of operator with a state.

Parameters

* operator — Qubit or FermionOperator to evaluate expectation value of. If operator is a
FermionOperator, it must be normal-ordered.

* computational_basis_state (scipy.sparse vector / list) — normal-
ized computational basis state (if scipy.sparse vector), or list of occupied orbitals.

Returns A real float giving expectation value.
Raises TypeError — Incorrect operator or state type.

openfermion.utils. fourier_transform (hamiltonian, grid, spinless)
Apply Fourier transform to change hamiltonian in plane wave basis.

c:f] =4/ l/NZ aIn exp(—ikyrm)cy, = \/1/N Z G €xP(1kyTm)

Parameters
* hamiltonian (FermionOperator)— The hamiltonian in plane wave basis.
e grid (Grid) — The discretization to use.
* spinless (bool)— Whether to use the spinless model or not.

Returns FermionOperator — The fourier-transformed hamiltonian.

1.5. openfermion.utils

57

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.freeze_orbitals (fermion_operator, occupied, unoccupied=None,

prune=True)
Fix some orbitals to be occupied and others unoccupied.

Removes all operators acting on the specified orbitals, and renumbers the remaining orbitals to eliminate unused
indices. The sign of each term is modified according to the ladder uperator anti-commutation relations in order
to preserve the expectation value of the operator.

Parameters

* occupied — A list containing the indices of the orbitals that are to be assumed to be
occupied.

* unoccupied — A list containing the indices of the orbitals that are to be assumed to be
unoccupied.

openfermion.utils.gaussian_state_preparation_circuit (quadratic_hamiltonian,

occupied_orbitals=None,
spin_sector=None)
Obtain the description of a circuit which prepares a fermionic Gaussian state.

Fermionic Gaussian states can be regarded as eigenstates of quadratic Hamiltonians. If the Hamiltonian con-
serves particle number, then these are just Slater determinants. See arXiv:1711.05395 for a detailed description
of how this procedure works.

The circuit description is returned as a sequence of elementary operations; operations that can be performed in
parallel are grouped together. Each elementary operation is either

* the string ‘pht’, indicating the particle-hole transformation on the last fermionic mode, which is the oper-
ator I3 such that

BayBt = al,, (1.18)
Ba;Bt =a;, j=1,...,NkIb)
or

* atuple (4, j, 0, ¢), indicating the operation
SN e 0ata: —ala
exp[upajaj]exp[(a;a; ajal)],
a Givens rotation of modes 7 and j by angles 6 and ¢.

Parameters

* quadratic_hamiltonian (QuadraticHamiltonian) - The Hamiltonian whose
eigenstate is desired.

* occupied_orbitals (1ist) — A list of integers representing the indices of the occu-
pied orbitals in the desired Gaussian state. If this is None (the default), then it is assumed
that the ground state is desired, i.e., the orbitals with negative energies are filled.

* spin_sector (optional str)— An optional integer specifying a spin sector to re-
strict to: O for spin-up and 1 for spin-down. If specified, the returned circuit acts on modes
indexed by spatial indices (rather than spin indices). Should only be specified if the Hamil-
tonian includes a spin degree of freedom and spin-up modes do not interact with spin-down
modes.

Returns

* circuit_description (list[tuple]) — A list of operations describing the circuit. Each operation
is a tuple of objects describing elementary operations that can be performed in parallel. Each
elementary operation is either the string ‘pht’, indicating a particle-hole transformation on

58

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

the last fermionic mode, or a tuple of the form (4, j, 6,), indicating a Givens rotation of
modes 7 and j by angles 6 and .

* start_orbitals (list) — The occupied orbitals to start with. This describes the initial state
that the circuit should be applied to: it should be a Slater determinant (in the computational
basis) with these orbitals filled.

openfermion.utils.generate_linear qubit_operator (qubit_operator, n_qubits=None, op-

)) tions=None)
Generates a LinearOperator from a QubitOperator.

Parameters
* qubit_operator (QubitOperator)— A qubit operator to be applied on vectors.
* n_qubits (int) - The total number of qubits

* options (LinearQubitOperatorOptions) — Options for the ParallelLinearQubit-
Operator.

Returns linear_operator(scipy.sparse.linalg.LinearOperator) — A linear operator.

openfermion.utils.generate_parity permutations (seq)
Generates the permutations and sign of a sequence by constructing a tree where the nth level contains all n-
permutations of m (n < m) objects.

At the last level where n == m all permutations are generated. The sign is kept updated by determining where
the next number is inserted into the current leaf’s set of numbers.

Example

Constructing the permutations of the sequence [A, B, C] constructs the following tree:
[[(A’ +1)]’ [(AB’ +1)» (BAs _1)]5 [(ABC’ +1)’ (ACB’ _1)’ (CAB, +1]’ [(BAC» _1)’ (BCA7 +1)’ (CBA’ _1)]]
Parameters seq — a sequence of a string to provide permutations

Returns a permutation list with the elements of the seq permuted and a sign associated with the
permutation.

openfermion.utils.geometry_ from pubchem (name: str, structure: str = None)
Function to extract geometry using the molecule’s name from the PubChem database. The ‘structure’ argument
can be used to specify which structure info to use to extract the geometry. If structure=None, the geometry will
be constructed based on 3D info, if available, otherwise on 2D (to keep backwards compatibility with the times
when the argument ‘structure’ was not implemented).

Parameters
* name - a string giving the molecule’s name as required by the PubChem database.

* structure - a string ‘2d’ or ‘3d’, to specify a specific structure information to be re-
trieved from pubchem. The default is None. Recommended value is 3d’.

Returns geometry — a list of tuples giving the coordinates of each atom with distances in Angstrom.

openfermion.utils.get_chemist_two_body_ coefficients (two_body_coefficients,

spin_basis=True)
Convert two-body operator coefficients to low rank tensor.

The input is a two-body fermionic Hamiltonian expressed as y_ .. pgrsalalaras

We will convert this to the chemistry convention expressing it as me gpqmaT

paqalas but without the spin
degree of freedom.

1.5. openfermion.utils 59

openfermion Documentation, Release 0.11.1.dev

In the process of performing this conversion, constants and one-body terms come out, which will be returned as

well.
Parameters
* two_body_ coefficients (ndarray)—an N x N x N x N numpy array giving the
Dpgrs tensor.
* spin_basis (bool) — True if the two-body terms are passed in spin orbital basis. False
if already in spatial orbital basis.
Returns

one_body_correction (ndarray) —
an N x N array of floats giving coefficients of the a;aq terms that come out.

chemist_two_body_coefficients (ndarray): an N x N x N x N numpy array giving the g,q,s
tensor in chemist notation.

Raises TypeError — Input must be two-body number conserving FermionOperator or Interaction-
Operator.

openfermion.utils.get_£file_path (file_name, data_directory)
Compute file_path for the file that stores operator.

Parameters
e file_name — The name of the saved file.

* data_directory — Optional data directory to change from default data directory speci-
fied in config file.

Returns file_path (string) — File path.
Raises OperatorUtilsError — File name is not provided.

openfermion.utils.get_gap (sparse_operator, initial_guess=None)
Compute gap between lowest eigenvalue and first excited state.

Parameters
* sparse_operator (LinearOperator)— Operator to find the ground state of.

* initial guess (ndarray) — Initial guess for eigenspace. A good guess dramatically
reduces the cost required to converge.

Returns: A real float giving eigenvalue gap.

openfermion.utils.get_ground_state (sparse_operator, initial_guess=None)
Compute lowest eigenvalue and eigenstate.

Parameters
* sparse_operator (LinearOperator)— Operator to find the ground state of.

* initial_guess (ndarray) — Initial guess for ground state. A good guess dramatically
reduces the cost required to converge.

Returns
* eigenvalue — The lowest eigenvalue, a float.

* cigenstate — The lowest eigenstate in scipy.sparse csc format.

60 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.get_linear_qubit_operator_diagonal (qubit_operator,

n_qubits=None)
Return a linear operator’s diagonal elements.

The main motivation is to use it for Davidson’s algorithm, to find out the lowest n eigenvalues and associated
eigenvectors.

Qubit terms with X or Y operators will contribute nothing to the diagonal elements, while I or Z will contribute
a factor of 1 or -1 together with the coefficient.

Parameters qubit_operator (QubitOperator)— A qubit operator.
Returns

linear_operator_diagonal(numpy.ndarray) —

The diagonal elements for LinearQubitOperator(qubit_operator).

openfermion.utils.group_into_tensor product_basis_sets (operator, seed=None)
Split an operator (instance of QubitOperator) into sub-operator QubitOperators, where each sub-operator has
terms that are diagonal in the same tensor product basis.

Each sub-operator can be measured using the same qubit post-rotations in expectation estimation. Grouping into
these tensor product basis sets has been found to improve the efficiency of expectation estimation significantly
for some Hamiltonians in the context of VQE (see section V(A) in the supplementary material of https://arxiv.
org/pdf/1704.05018v2.pdf). The more general problem of grouping operators into commutitative groups is
discussed in section IV (B2) of https://arxiv.org/pdf/1509.04279v 1.pdf. The original input operator is the union
of all output sub-operators, and all sub-operators are disjoint (do not share any terms).

Parameters

* operator (QubitOperator)—the operator that will be split into sub-operators (tensor
product basis sets).

* seed (int) — default None. Random seed used to initialize the numpy.RandomState
pseudo-random number generator.

Returns
sub_operators (dict) —

a dictionary where each key defines a tensor product basis, and each corresponding value is a
QubitOperator with terms that are all diagonal in that basis. key (tuple of tuples): Each key
is a term, which defines

a tensor product basis. A term is a product of individual factors; each factor is repre-
sented by a tuple of the form (index, action), and these tuples are collected into a larger
tuple which represents the term as the product of its factors. action is from the set { ‘X,
‘Y’, “Z’} and index is a non-negative integer corresponding to the index of a qubit.

value (QubitOperator): A QubitOperator with terms that are diagonal in the basis de-
fined by the key it is stored in.
Raises TypeError — Operator of invalid type.

openfermion.utils.haar random_vector (n, seed=None)
Generate an n dimensional Haar randomd vector.

openfermion.utils.hartree_fock_state_jellium(grid, n_electrons, spinless=True,

plane_wave=False)
Give the Hartree-Fock state of jellium.

Parameters

1.5. openfermion.utils 61

https://arxiv.org/pdf/1704.05018v2.pdf
https://arxiv.org/pdf/1704.05018v2.pdf
https://arxiv.org/pdf/1509.04279v1.pdf

openfermion Documentation, Release 0.11.1.dev

e grid (Grid) — The discretization to use.
* n_electrons (int)— Number of electrons in the system.
* spinless (bool)— Whether to use the spinless model or not.

* plane_wave (bool)— Whether to return the Hartree-Fock state in the plane wave (True)
or dual basis (False).

Notes
The jellium model is built up by filling the lowest-energy single-particle states in the plane-wave Hamiltonian
until n_electrons states are filled.

openfermion.utils.hermitian_conjugated (operator)
Return Hermitian conjugate of operator.

openfermion.utils.inline_sum (summands, seed)
Computes a sum, using the __iadd__ operator. :param seed: The starting total. The zero value. :type seed: T
:param summands: Values to add (with +=) into the total. :type summands: iterable[T]

Returns T — The result of adding all the factors into the zero value.

openfermion.utils.inner_ product (state_I, state_2)
Compute inner product of two states.

openfermion.utils.inverse_fourier_ transform (hamiltonian, grid, spinless)
Apply inverse Fourier transform to change hamiltonian in plane wave dual basis.

a:r, = \/1/]\/201” exp(ikyrm)ay = v/ I/NZC"” exp(—ikyTm)

Parameters
* hamiltonian (FermionOperator)— The hamiltonian in plane wave dual basis.
* grid (Grid) — The discretization to use.
* spinless (bool) — Whether to use the spinless model or not.

Returns FermionOperator — The inverse-fourier-transformed hamiltonian.

openfermion.utils.is_hermitian (operator)
Test if operator is Hermitian.

openfermion.utils.is_identity (operator)
Check whether QubitOperator of FermionOperator is identity.

Parameters operator — QubitOperator, FermionOperator, BosonOperator, or QuadOperator.
Raises TypeError — Operator of invalid type.

openfermion.utils.jordan_wigner_sparse (fermion_operator, n_qubits=None)
Initialize a Scipy sparse matrix from a FermionOperator.

Operators are mapped as follows: a_j*dagger ->7_0.. Z_{j-1} X_j-iY_j)/2a_j>7Z 0. Z_{j-1} X j+
iY_j)/2
Parameters
* fermion_operator (FermionOperator) —instance of the FermionOperator class.
* n_qubits (int) - Number of qubits.

Returns The corresponding Scipy sparse matrix.

62 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.jw_configuration_state (occupied_orbitals, n_qubits)
Function to produce a basis state in the occupation number basis.

Parameters

* occupied_orbitals (1ist)— A list of integers representing the indices of the occu-
pied orbitals in the desired basis state

* n_qubits (int) — The total number of qubits
Returns basis_vector(sparse) — The basis state as a sparse matrix

openfermion.utils.jw_get_gaussian_state (quadratic_hamiltonian, occupied_orbitals=None)
Compute an eigenvalue and eigenstate of a quadratic Hamiltonian.

Eigenstates of a quadratic Hamiltonian are also known as fermionic Gaussian states.
Parameters

* quadratic_hamiltonian (QuadraticHamiltonian) - The Hamiltonian whose
eigenstate is desired.

* occupied_orbitals (1ist) — A list of integers representing the indices of the occu-
pied orbitals in the desired Gaussian state. If this is None (the default), then it is assumed
that the ground state is desired, i.e., the orbitals with negative energies are filled.

Returns
* energy (float) — The eigenvalue.
* state (sparse) — The eigenstate in scipy.sparse csc format.

openfermion.utils.jw_get_ground_state_at_particle_number (sparse_operator, parti-
)) cle_number)
Compute ground energy and state at a specified particle number.

Assumes the Jordan-Wigner transform. The input operator should be Hermitian and particle-number-
conserving.

Parameters
* sparse_operator (sparse)— A Jordan-Wigner encoded sparse matrix.

* particle_number (int) - The particle number at which to compute the ground energy
and states

Returns
ground_energy(float) —

The lowest eigenvalue of sparse_operator within the eigenspace of the number operator cor-
responding to particle_number.

ground_state(ndarray): The ground state at the particle number

openfermion.utils.jw_hartree_fock_state (n_electrons, n_orbitals)
Function to produce Hartree-Fock state in JW representation.

openfermion.utils.jw_number restrict_operator (operator, n_electrons, n_qubits=None)
Restrict a Jordan-Wigner encoded operator to a given particle number

Parameters

* sparse_operator (ndarray or sparse)-Numpy operator acting on the space of
n_qubits.

* n_electrons (int)— Number of particles to restrict the operator to

1.5. openfermion.utils 63

openfermion Documentation, Release 0.11.1.dev

* n_qubits (int)— Number of qubits defining the total state
Returns
new_operator(ndarray or sparse) —
Numpy operator restricted to acting on states with the same particle number.

openfermion.utils.jw_number restrict_state (state, n_electrons, n_qubits=None)
Restrict a Jordan-Wigner encoded state to a given particle number

Parameters
* state (ndarray or sparse)-—Numpy vector in the space of n_qubits.
* n_electrons (int)— Number of particles to restrict the state to
* n_qubits (int)— Number of qubits defining the total state
Returns
new_operator(ndarray or sparse) —
Numpy vector restricted to states with the same particle number. May not be normalized.

openfermion.utils.jw_slater_ determinant (slater_determinant_matrix)
Obtain a Slater determinant.

The input is an Ny X N matrix () with orthonormal rows. Such a matrix describes the Slater determinant
i i
by -~ by, |vac),

where

N

t_

=) Qe
k=1

Parameters slater determinant_matrix — The matrix @) which describes the Slater deter-
minant to be prepared.

Returns The Slater determinant as a sparse matrix.

openfermion.utils.jw_sz_restrict_operator (operator, sz_value, n_electrons=None,
n_qubits=None, up_index=<function
up_index>, down_index=<function

))) down_index>)
Restrict a Jordan-Wigner encoded operator to a given Sz value

Parameters
* operator (ndarray or sparse)-— Numpy operator acting on the space of n_qubits.
* sz_value (float)— Desired Sz value. Should be an integer or half-integer.

* n_electrons (int, optional)— Number of particles to restrict the operator to, if
such a restriction is desired.

* n_qubits (int, optional)- Number of qubits defining the total state

* up_index (Callable, optional)— Function that maps a spatial index to the index
of the corresponding up site

* down_index (Callable, optional)— Function that maps a spatial index to the in-
dex of the corresponding down site

64 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Returns
new_operator(ndarray or sparse) —
Numpy operator restricted to acting on states with the desired Sz value.

openfermion.utils.jw_sz_restrict_state (srate, sz_value, n_electrons=None,
n_qubits=None, up_index=<function up_index>,
down_index=<function down_index>)
Restrict a Jordan-Wigner encoded state to a given Sz value

Parameters
* state (ndarray or sparse)-—Numpy vector in the space of n_qubits.
* sz_value (float)— Desired Sz value. Should be an integer or half-integer.

* n_electrons (int, optional)— Number of particles to restrict the operator to, if
such a restriction is desired.

* n_qubits (int, optional)— Number of qubits defining the total state

* up_index (Callable, optional)— Function that maps a spatial index to the index
of the corresponding up site

* down_index (Callable, optional)— Function that maps a spatial index to the in-
dex of the corresponding down site

Returns
new_operator(ndarray or sparse) —
Numpy vector restricted to states with the desired Sz value. May not be normalized.

openfermion.utils.lambda_norm (diagonal_operator)
Computes the lambda norm relevant to LCU algorithms.

Parameters diagonal_ operator — instance of DiagonalCoulombHamiltonian.
Returns lambda_norm — A float giving the lambda norm.

openfermion.utils.load_operator (file_name=None, data_directory=None, plain_text=False)
Load FermionOperator or QubitOperator from file.

Parameters
e file name — The name of the saved file.

* data_directory — Optional data directory to change from default data directory speci-
fied in config file.

* plain_text — Whether the input file is plain text
Returns
operator —
The stored FermionOperator, BosonOperator, QuadOperator, or QubitOperator

Raises TypeError — Operator of invalid type.

openfermion.utils.low_depth_second_order_trotter_error_ bound (ferms, in-
dices=None,
is_hopping_operator=None,
Jjel-

lium_only=False,
verbose=Fualse)

1.5. openfermion.utils 65

openfermion Documentation, Release 0.11.1.dev

Numerically upper bound the error in the ground state energy for the second-order Trotter-Suzuki expansion.
Parameters
* terms — a list of single-term FermionOperators in the Hamiltonian to be simulated.
* indices - a set of indices the terms act on in the same order as terms.
* is_hopping_operator —a list of whether each term is a hopping operator.

* jellium only — Whether the terms are from the jellium Hamiltonian only, rather than
the full dual basis Hamiltonian (i.e. whether c_i = ¢ for all number operators i” i, or whether
they depend on i as is possible in the general case).

* verbose — Whether to print percentage progress.

Returns A float upper bound on norm of error in the ground state energy.

Notes

Follows Equation 9 of Poulin et al.’s work in “The Trotter Step Size Required for Accurate Quantum Sim-
ulation of Quantum Chemistry” to calculate the error operator, for the “stagger”-based Trotter step for de-
tailed in Kivlichan et al., “Quantum Simulation of Electronic Structure with Linear Depth and Connectivity”,
arxiv:1711.04789.

openfermion.utils.low_depth_second_order_ trotter_ error_ operator (ferms, n-
dices=None,
is_hopping_operator=None,
Jjel-
lium_only=False,
ver-

bose=Fualse)
Determine the difference between the exact generator of unitary evolution and the approximate generator given

by the second-order Trotter-Suzuki expansion.
Parameters

* terms - a list of FermionOperators in the Hamiltonian in the order in which they will be
simulated.

* indices - a set of indices the terms act on in the same order as terms.
* is_hopping_ operator — alist of whether each term is a hopping operator.

* jellium_only — Whether the terms are from the jellium Hamiltonian only, rather than
the full dual basis Hamiltonian (i.e. whether c_i = ¢ for all number operators i” i, or whether
they depend on i as is possible in the general case).

* verbose — Whether to print percentage progress.
Returns
The difference between the true and effective generators of time evolution for a single

Trotter step.

Notes: follows Equation 9 of Poulin et al.’s work in “The Trotter Step Size Required for Accurate Quan-
tum Simulation of Quantum Chemistry”, applied to the “stagger”-based Trotter step for detailed in
Kivlichan et al., “Quantum Simulation of Electronic Structure with Linear Depth and Connectivity”,
arxiv:1711.04789.

66 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.low_rank_two_body decomposition (two_body_coefficients,
truncation_threshold=1e-08, fi-

nal_rank=None, spin_basis=True)
Convert two-body operator into sum of squared one-body operators.

As in arXiv:1808.02625, this function decomposes qurs hpqrsa;ﬁa:f]aras as y)\l(zpq glpqa};aq)2 1 is trun-
cated to take max value L so that 3/ (X g laipa 2Nl < 2

Parameters

* two_body coefficients (ndarray)—an N x N x N x N numpy array giving the
hpqrs tensor. This tensor must be 8-fold symmetric (real integrals).

e truncation_threshold (optional Float) - the value of x, above.

 final_ rank (optional int) — if provided, this specifies the value of L at which to
truncate. This overrides truncation_threshold.

* spin_basis (bool) — True if the two-body terms are passed in spin orbital basis. False
if already in spatial orbital basis.

Returns
eigenvalues (ndarray of floats) —
length L array giving the);.

one_body_squares (ndarray of floats): L x N x N array of floats corresponding to the value
of Ipql -

one_body_correction (ndarray): One-body correction terms that result from reordering to
chemist ordering, in spin-orbital basis.

truncation_value (float): after truncation, this is the value ZzL;ol(qu lg1pql)2IN] <
Raises TypeError — Invalid two-body coefficient tensor specification.

openfermion.utils.majorana_operator (ferm=None, coefficient=1.0)
Initialize a Majorana operator.

Parameters

* term(tuple or string)- The first element of the tuple indicates the mode on which
the Majorana operator acts, starting from zero. The second element of the tuple is an integer,
either O or 1, indicating which type of Majorana operator it is:

Type 0: a;f, +ap
Type 1: i(a; —ap)

where the a;, and a,, are the usual fermionic ladder operators. Alternatively, one can provide
a string such as ‘c2’, which is a Type 0 operator on mode 2, or ‘d3’, which is a Type 1
operator on mode 3. Default will result in the zero operator.

e coefficient (complex or float, optional)-The coefficientof the term. De-
fault value is 1.0.

Returns FermionOperator

openfermion.utils.map_one_hole_dm_to_one_pdm (ogdm)
Convert a 1-hole-RDM to a 1-RDM

Parameters ogdm (numpy.ndarray)— The 1-hole-RDM as a 2-index tensor. Indices follow the
internal convention of oqdm[p, q] == apa};.

Returns ogdm (numpy.ndarray) — the 1-hole-RDM transformed from a 1-RDM.

1.5. openfermion.utils 67

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.map_one_pdm_to_one_hole_dm (opdm)
Convert a 1-RDM to a 1-hole-RDM

Parameters opdm (numpy.ndarray)— The 1-RDM as a 2-index tensor. Indices follow the in-
ternal convention of opdm[p, q] == a;f,aq.

Returns ogdm (numpy.ndarray) — the 1-hole-RDM transformed from a 1-RDM.

openfermion.utils.map_particle_hole_dm to_one_pdm (phdm, num_particles,

num_basis_functions)
Map the particle-hole-RDM to the 1-RDM

Parameters

e phdm (numpy.ndarray) — The 2-particle-hole-RDM as a 4-index tensor. Indices follow
the internal convention of phdm([p, q, r, s] == afaqalas.

* num_particles — number of particles in the system.
* num_basis_functions — number of spin-orbitals (usually the number of qubits)
Returns opdm (numpy.ndarray) — the 1-RDM transformed from a 1-RDM.

openfermion.utils.map_particle_hole_dm_to_two_pdm (phdm, opdm)
Map the 2-RDM to the particle-hole-RDM

Parameters

e phdm (numpy.ndarray) — The 2-particle-hole-RDM as a 4-index tensor. Indices follow
the internal convention of phdm([p, q, r, s] == afagalas.

e opdm (numpy.ndarray) — The 1-RDM as a 2-index tensor. Indices follow the internal
convention of opdm][p, q] == a;;aq.

Returns tpdm (numpy.ndarray) — The 2-RDM matrix.

openfermion.utils.map_two_hole_dm_to_one_hole_dm (tgdm, hole_number)
Map from 2-hole-RDM to 1-hole-RDM

Parameters

* tqdm (numpy.ndarray) — The 2-hole-RDM as a 4-index tensor. Indices follow the
internal convention of tqdm[p, g, 1, s] == a,a,alal.

* hole number (float) — Number of holes in the system. For chemical systems this is
usually the number of spin orbitals minus the number of electrons.

Returns oqgdm (numpy.ndarray) — The 1-hole-RDM contracted from the tqdm.

openfermion.utils.map_two_hole_dm_to_two_pdm (tgdm, opdm)
Map from the 2-hole-RDM to the 2-RDM

Parameters

* tqdm (numpy.ndarray) — The 2-hole-RDM as a 4-index tensor. Indices follow the
internal convention of tqdm(p, q, 1, s] == a,a,alal.

* opdm (numpy.ndarray) — The 1-RDM as a 2-index tensor. Indices follow the internal

convention of opdm|[p, q] == a;aq.

Returns tpdm (numpy.ndarray) — The 2-RDM matrix.

openfermion.utils.map_two_pdm_to_one_pdm (tpdm, particle_number)
Contract a 2-RDM to a 1-RDM

Parameters

68 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* tpdm (numpy.ndarray) — The 2-RDM as a 4-index tensor. Indices follow the internal
convention of tpdm(p, q, r, s] == afa}aas.

* particle_number (float) - number of particles in the system
Returns opdm (numpy.ndarray) — The 1-RDM contracted from the tpdm.

openfermion.utils.map_two_pdm_ to_particle_hole_dm (tpdm, opdm)
Map the 2-RDM to the particle-hole-RDM

Parameters

* tpdm (numpy.ndarray) — The 2-RDM as a 4-index tensor. Indices follow the internal
convention of tpdm[p, q, r, s] == aja}aras.

* opdm (numpy.ndarray) — The 1-RDM as a 2-index tensor. Indices follow the internal
convention of opdm(p, q] == a}a,.

Returns phdm (numpy.ndarray) — The particle-hole matrix.

openfermion.utils.map_two_pdm_to_two_hole_dm (pdm, opdm)
Map from the 2-RDM to the 2-hole-RDM

Parameters
* tpdm (numpy.ndarray) — The 2-RDM as a 4-index tensor. Indices follow the internal

convention of tpdm[p, g, 1, s] == afa}a,as.

* opdm (numpy.ndarray) — The 1-RDM as a 2-index tensor. Indices follow the internal
convention of opdm(p, q] == afa,.

Returns rqgdm (numpy.ndarray) — The 2-hole matrix.

openfermion.utils.module_importable (module)
Without importing it, returns whether python module is importable.

Parameters module (string)— Name of module.
Returns bool

openfermion.utils.normal_ordered (operator, hbar=1.0)
Compute and return the normal ordered form of a FermionOperator, BosonOperator, QuadOperator, or Interac-
tionOperator.

Due to the canonical commutation/anticommutation relations satisfied by these operators, there are multiple
forms that the same operator can take. Here, we define the normal ordered form of each operator, providing a
distinct representation for distinct operators.

In our convention, normal ordering implies terms are ordered from highest tensor factor (on left) to lowest (on
right). In addition:

* FermionOperators: a’dagger comes before a
* BosonOperators: b dagger comes before b

¢ QuadOperators: q operators come before p operators,

Parameters

* operator — an instance of the FermionOperator, BosonOperator, QuadOperator, or Inter-
actionOperator classes.

* hbar (float) — the value of hbar used in the definition of the commutator [q_i, p_j]
=1 hbar delta_ij. By default hbar=1. This argument only applies when normal ordering
QuadOperators.

1.5. openfermion.utils 69

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.number_ operator (n_modes, mode=None, coefficient=1.0, parity=-1)
Return a fermionic or bosonic number operator.

Parameters
* n_modes (int)— The number of modes in the system.

* mode (int, optional)- The mode on which to return the number operator. If None,
return total number operator on all sites.

* coefficient (float) - The coefficient of the term.

* parity (int) — Returns the fermionic number operator if parity=-1 (default), and returns
the bosonic number operator if parity=1.

Returns operator (BosonOperator or FermionOperator)

openfermion.utils.pauli_exp_to_qgasm (qubit_operator_list, evolution_time=1.0,
qubit_list=None, ancilla=None)
Exponentiate a list of QubitOperators to a QASM string generator.

Exponentiates a list of QubitOperators, and yields string generators in QASM format using the formula:
exp(-1.0j * evolution_time * op).
Parameters

* qubit_operator_list (list of QubitOperators) — list of single Pauli-term
QubitOperators to be exponentiated

* evolution_time (float) - evolution time of the operators in the list

* qubit_1list — (list/tuple or None)Specifies the labels for the qubits to be output in gasm.
If a list/tuple, must have length greater than or equal to the number of qubits in the Qubit-
Operator. Entries in the list must be castable to string. If None, qubits are labeled by index
(i.e. an integer).

* ancilla (string or None) - if any, an ancilla qubit to perform the rotation condi-
tional on (for quantum phase estimation)

Yields string
openfermion.utils.prepare_one_body_squared_evolution (one_body_matrix,

spin_basis=True)
Get Givens angles and DiagonalHamiltonian to simulate squared one-body.

The goal here will be to prepare to simulate evolution under (>, hpqa;aq)2 by decomposing as

Re ™" 2pq Veamema Ri'yphere : math : is a basis transformation matrix.
TODO: Add option for truncation based on one-body eigenvalues.
Parameters

* one_body_matrix (ndarray of floats)-—anN by N array storing the coefficients
of a one-body operator to be squared. For instance, in the above the elements of this matrix
are h,,.

Pq

* spin_basis (bool) — Whether the matrix is passed in the spin orbital basis.
Returns

density_density_matrix(ndarray of floats) an N by N array storing the diagonal two-body
coefficeints V), above.

70 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

basis_transformation_matrix (ndarray of floats) an N by N array storing the values of the
basis transformation.

Raises ValueError —one_body_matrix is not Hermitian.

openfermion.utils.preprocess_lcu coefficients_for reversible_ sampling (lcu_coefficients,
ep-
])) silon)
Prepares data used to perform efficient reversible roulette selection.

Treats the coefficients of unitaries in the linear combination of unitaries decomposition of the Hamiltonian as
probabilities in order to decompose them into a list of alternate and keep numerators allowing for an efficient
preparation method of a state where the computational basis state :math. 1k> has an amplitude proportional to
the coefficient.

It is guaranteed that following the following sampling process will sample each index k with a probability
within epsilon of lcu_coefficients[k] / sum(lcu_coefficients) and also, 1. Uniformly sample an index i from [0,
len(lcu_coefficients) - 1]. 2. With probability keep_numers[i] / by keep_denom, return i. 3. Otherwise return
alternates|i].

Parameters

* lcu_coefficients — A list of non-negative floats, with the i’th float corresponding to
the i’th coefficient of an LCU decomposition of the Hamiltonian (in an ordering determined
by the caller).

* epsilon — Absolute error tolerance.
Returns
alternates (list[int]) —

A python list of ints indicating alternative indices that may be switched to after generating a
uniform index. The int at offset k is the alternate to use when the initial index is k.

keep_numers (list[int]): A python list of ints indicating the numerators of the probability
that the alternative index should be used instead of the initial index.

sub_bit_precision (int): A python int indicating the exponent of the denominator to divide
the items in keep_numers by in order to get a probability. The actual denominator is
2**sub_bit_precision.

openfermion.utils.prune_unused_indices (symbolic_operator)
Remove indices that do not appear in any terms.

Indices will be renumbered such that if an index i does not appear in any terms, then the next largest index that
appears in at least one term will be renumbered to i.

openfermion.utils.qubit_operator_sparse (qubit_operator, n_qubits=None)
Initialize a Scipy sparse matrix from a QubitOperator.

Parameters
* qubit_operator (QubitOperator) — instance of the QubitOperator class.
* n_qubits (int)— Number of qubits.

Returns The corresponding Scipy sparse matrix.

openfermion.utils.random_antisymmetric_matrix (n, real=False, seed=None)
Generate a random n X n antisymmetric matrix.

openfermion.utils.random diagonal_coulomb_hamiltonian (n_qubits, real=False,

)))) seed=None)
Generate a random instance of DiagonalCoulombHamiltonian.

1.5. openfermion.utils 4

openfermion Documentation, Release 0.11.1.dev

Parameters
* n_qubits — The number of qubits

* real — Whether to use only real numbers in the one-body term

openfermion.utils.random_hermitian_matrix (n, real=False, seed=None)

Generate a random n x n Hermitian matrix.

openfermion.utils.random_interaction_operator (n_orbitals, expand_spin=False,

real=True, seed=None)
Generate a random instance of InteractionOperator.

Parameters
* n_orbitals — The number of orbitals.

* expand_spin — Whether to expand each orbital symmetrically into two spin orbitals.
Note that if this option is set to True, then the total number of orbitals will be doubled.

* real — Whether to use only real numbers.

* seed — A random number generator seed.

openfermion.utils.random_quadratic_hamiltonian (n_orbitals, con-

serves_particle_number=False,
real=Fualse, expand_spin=False,

)))) seed=None)
Generate a random instance of QuadraticHamiltonian.

Parameters
* n_orbitals (int) - the number of orbitals

* conserves_particle_number (bool) — whether the returned Hamiltonian should
conserve particle number

* real (bool)— whether to use only real numbers

* expand_spin — Whether to expand each orbital symmetrically into two spin orbitals.
Note that if this option is set to True, then the total number of orbitals will be doubled.

Returns QuadraticHamiltonian

openfermion.utils.random _unitary matrix (n, real=False, sced=None)

Obtain a random n X n unitary matrix.

openfermion.utils.reduce_number of_ terms (operator, stabilizers, maintain_length=False,

output_fixed_positions=False, man-
ual_input=False, fixed_positions=None)
Reduce the number of Pauli strings of operator using stabilizers.

This function reduces the number of terms in a string by merging terms that are identical by the multiplication
of stabilizers. The resulting Pauli strings maintain their length, unless specified otherwise. In the latter case, a
list of indices can be passed to manually indicate the qubits to be fixed.

It is possible to reduce the number of terms in a Hamiltonian by merging Pauli strings H;, H5 that are related
by a stabilizer S such that H; = Hs - S. Given a stabilizer generator X ® p this algorithm fixes the first qubit,
such that every Pauli string in the Hamiltonian acts with either Z or the identity on it. Where necessary, this is
achieved by multiplications with +X ® p: a string Y ® h, for instance, is turned into Z ® (Fih - p). Qubits
on which a generator acts as Y (Z) are constrained to be acted on by the Hamiltonian as Z (X)) or the identity.
Fixing a different qubit for every stabilizer generator eliminates all redundant strings. The fixed representations
are in the end re-expressed as the shortest of the original strings, H; or Ho.

Parameters

72

Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

Returns

operator (QubitOperator)— Operator of which the number of terms will be reduced.

stabilizers (QubitOperator) — Stabilizer generators used for the reduction. Can
also be passed as a list of QubitOperator.

maintain_length (Boolean) — Option deciding whether the fixed Pauli strings are
re-expressed in their original form. Set to False by default.

output_fixed_positions (Boolean) — Option deciding whether to return the list
of fixed qubit positions. Set to False by default.

manual_input (Boolean) — Option to pass the list of fixed qubits positions manually.
Set to False by default.

fixed positions (1ist) — (optional) List of fixed qubit positions. Passing a list is
only effective if manual_input is True.

reduced_operator (QubitOperator) —

Operator with reduced number of terms.

fixed_positions (list): (optional) Fixed qubits.

Raises

TypeError — Input terms must be QubitOperator.
TypeError — Input stabilizers must be QubitOperator or list.
StabilizerError — Trivial stabilizer (identity).
StabilizerError — Stabilizer with complex coefficient.
TypeError — List of fixed qubits required if manual input True.

StabilizerError — The number of stabilizers must be equal to the number of qubits
manually fixed.

StabilizerError — All qubit positions must be different.

openfermion.utils.reorder (operator, order_function, num_modes=None, reverse=False)

Changes the ladder operator order of the Hamiltonian based on the provided order_function per mode index.

Parameters

operator (SymbolicOperator)— the operator that will be reordered. must be a Sym-
bolicOperator or any type of operator that inherits from SymbolicOperator.

order_function (func) — a function per mode that is used to map the indexing. must
have arguments mode index and num_modes.

num_modes (int) — default None. User can provide the number of modes assumed for
the system. if None, the number of modes will be calculated based on the Operator.

reverse (bool) — default False. if set to True, the mode mapping is reversed. reverse
= True will not revert back to original if num_modes calculated differs from original and
reverted.

Note: Every order function must take in a mode_idx and num_modes.

openfermion.utils.s_minus_operator (n_spatial_orbitals)
Return the s+ operator.

S™=>"al 400 (1.20)
=1

1.5. openfermion.utils

73

openfermion Documentation, Release 0.11.1.dev

Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits + 1 // 2).

Returns operator (FermionOperator) — corresponding to the s- operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices
correspond to spin-down (beta) modes.

openfermion.utils.s_plus_operator (n_spatial_orbitals)
Return the s+ operator.

n
ST=>"al aip (1.21)
=1

Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits + 1 // 2).

Returns operator (FermionOperator) — corresponding to the s+ operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices
correspond to spin-down (beta) modes.

openfermion.utils.s_squared_operator (n_spatial_orbitals)
Return the s*{2} operator.

S§% =878t + 5%(5% +1) (1.22)

Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits + 1 // 2).

Returns operator (FermionOperator) — corresponding to the s+ operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices
correspond to spin-down (beta) modes.

openfermion.utils.save_operator (operator, file_name=None, data_directory=None, al-

low_overwrite=False, plain_text=False)
Save FermionOperator or QubitOperator to file.

Parameters
* operator — An instance of FermionOperator, BosonOperator, or QubitOperator.
e file_name — The name of the saved file.

* data_directory — Optional data directory to change from default data directory speci-
fied in config file.

* allow_ overwrite — Whether to allow files to be overwritten.

* plain_text — Whether the operator should be saved to a plain-text format for manual
analysis

Raises
* OperatorUtilsError — Not saved, file already exists.

* TypeError — Operator of invalid type.

74 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.slater_ determinant_preparation_circuit (slater_determinant_matrix)
Obtain the description of a circuit which prepares a Slater determinant.

The input is an Ny x [N matrix () with orthonormal rows. Such a matrix describes the Slater determinant
i T
by -+ be |vac),

where

N

t_

b= Qina
k=1

The output is the description of a circuit which prepares this Slater determinant, up to a global phase. The
starting state which the circuit should be applied to is a Slater determinant (in the computational basis) with the
first N orbitals filled.

Parameters slater determinant_matrix — The matrix Q which describes the Slater deter-
minant to be prepared.

Returns circuit_description — A list of operations describing the circuit. Each operation is a tuple
of elementary operations that can be performed in parallel. Each elementary operation is a tuple
of the form (i, j, 0, ¢), indicating a Givens rotation of modes 7 and j by angles 6 and .

openfermion.utils.sparse_eigenspectrum (sparse_operator)
Perform a dense diagonalization.

Returns eigenspectrum — The lowest eigenvalues in a numpy array.

openfermion.utils.sx_operator (n_spatial_orbitals)
Return the sx operator.

n

T 1 —
5% = 5Z(S++S) (1.23)

i=1
Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits // 2).

Returns operator (FermionOperator) — corresponding to the sx operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices
correspond to spin-down (beta) modes.

openfermion.utils.sy_operator (n_spatial_orbitals)
Return the sy operator.

SY = %Z Z(S* - 57) (1.24)

Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits // 2).

Returns operator (FermionOperator) — corresponding to the sx operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices
correspond to spin-down (beta) modes.

openfermion.utils.sz_operator (n_spatial_orbitals)
Return the sz operator.

1
S* = 3 Z(ni,a —n4p) (1.25)

1.5. openfermion.utils 75

openfermion Documentation, Release 0.11.1.dev

Parameters n_spatial_orbitals — number of spatial orbitals (n_qubits // 2).

Returns operator (FermionOperator) — corresponding to the sz operator over n_spatial_orbitals.

Note: The indexing convention used is that even indices correspond to spin-up (alpha) modes and odd indices

correspond to spin-down (beta) modes.

openfermion.utils.taper_off qubits (operator, stabilizers, manual_input=False,

fixed_positions=None, output_tapered_positions=False)
Remove qubits from given operator.

Qubits are removed by eliminating an equivalent number of stabilizer conditions. Which qubits that are can

either be determined automatically or their positions can be set manually.

Qubits can be disregarded from the Hamiltonian when the effect of all its terms on them is rendered trivial.
This algorithm employs a stabilizers like +X ® p to fix the action of every Pauli string on the first qubit to
Z or the identity. A string X ® h would for instance be multiplied with the stabilizer to obtain 1 ® (£h - p)
while a string Z ® h/ would pass without correction. The first qubit can subsequently be removed as it must
be in the computational basis in Hamiltonian eigenstates. For stabilizers acting as Y (Z) on selected qubits,
the algorithm would fix the action of every Hamiltonian string to Z (X). Updating also the list of remaining

stabilizer generators, the algorithm is run iteratively.
Parameters
* operator (QubitOperator)— Operator of which qubits will be removed.

* stabilizers (QubitOperator) — Stabilizer generators for the tapering. Can also be
passed as a list of QubitOperator.

* manual_input (Boolean) — Option to pass the list of fixed qubits positions manually.
Set to False by default.

» fixed positions (1ist) — (optional) List of fixed qubit positions. Passing a list is
only effective if manual_input is True.

* output_tapered_positions (Boolean)— Option to output the positions of qubits
that have been removed.

Returns

skimmed_operator (QubitOperator) — Operator with fewer qubits. removed_positions (list):
(optional) List of removed qubit positions.

For the qubits to be gone in the qubit count, the remaining qubits have been moved up
to those indices.

openfermion.utils.trotter_operator_grouping (hamiltonian, trotter_number=1, trot-
ter_order=1, term_ordering=None,
k_exp=1.0)

Trotter-decomposes operators into groups without exponentiating.

Operators are still Hermitian at the end of this method but have been multiplied by k_exp.

Note: The default term_ordering is simply the ordered keys of the QubitOperators.terms dict.

Parameters
e hamiltonian (QubitOperator) — full hamiltonian

* trotter_number (int)— optional number of trotter steps - default is 1

76 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

* trotter_order (int)— optional order of trotterization as an integer from 1-3 - default
is 1
* term_ordering (list of (tuples of tuples))— optional list of QubitOpera-
tor terms dictionary keys that specifies order of terms when trotterizing
* k_exp (float) — optional exponential factor to all terms when trotterizing
Yields QubitOperator generator
Raises
* ValueError if order > 3 or order <=0,
* TypeError for incorrect types
openfermion.utils.trotterize_exp_qubop_to_qasm (hamiltonian, evolution_time=1, trot-
ter_number=1, trotter_order=1,

term_ordering=None, k_exp=1.0,

qubit_list=None, ancilla=None)
Trotterize a Qubit hamiltonian and write it to QASM format.

Assumes input hamiltonian is still hermitian and -1.0j has not yet been applied. Therefore, signs of coefficients
should reflect this. Returns a generator which generates a QASM file.

Parameters
* hamiltonian (QubitOperator)— hamiltonian

* trotter_ number (int) — optional number of trotter steps (slices) for trotterization as
an integer - default = 1

* trotter_order - optional order of trotterization as an integer - default = 1

* term_ordering(list of (tuples of tuples))-listof tuples (QubitOperator
terms dictionary keys) that specifies order of terms when trotterizing

* qubit_1list — (list/tuple or None)Specifies the labels for the qubits to be output in gasm.
If a list/tuple, must have length greater than or equal to the number of qubits in the Qubit-
Operator. Entries in the list must be castable to string. If None, qubits are labeled by index
(i.e. an integer).

* k_exp (float) — optional exponential factor to all terms when trotterizing
* Yields - string generator

openfermion.utils.ucesd_convert_amplitude_format (single_amplitudes, dou-
ble_amplitudes)

Re-format single_amplitudes and double_amplitudes from ndarrays to lists.

Parameters

* single_amplitudes (ndarray) — [NxN] array storing single excitation amplitudes
corresponding to t[i,j] * (a_i"dagger a_j - H.C.)

* double_amplitudes (ndarray)— [NxNxNxN] array storing double excitation ampli-
tudes corresponding to t[i,j,k,1] * (a_i"dagger a_j a_k”daggera_1- H.C.)

Returns
single_amplitudes_list(list) —

list of lists with each sublist storing a list of indices followed by single excitation amplitudes
Le. [[[igltil, ...]

1.5. openfermion.utils 77

openfermion Documentation, Release 0.11.1.dev

double_amplitudes_list(list): list of lists with each sublist storing a list of indices followed
by double excitation amplitudes i.e. [[[i,j,k,1],t_ijkl], ...]

openfermion.utils.ucesd _generator (single_amplitudes, double_amplitudes,

o) anti_hermitian=True)
Create a fermionic operator that is the generator of uccsd.

This a the most straight-forward method to generate UCCSD operators, however it is slightly inefficient. In
particular, it parameterizes all possible excitations, so it represents a generalized unitary coupled cluster ansatz,
but also does not explicitly enforce the uniqueness in parametrization, so it is redundant. For example there will
be a linear dependency in the ansatz of single_amplitudes][i,j] and single_amplitudes|j,i].

Parameters

* single_amplitudes (1ist or ndarray) — list of lists with each sublist storing a
list of indices followed by single excitation amplitudes i.e. [[[i,j],t_ij], ...] OR [NxN] array
storing single excitation amplitudes corresponding to t[i,j] * (a_i*dagger a_j - H.C.)

* double_amplitudes (list or ndarray) — list of lists with each sublist stor-
ing a list of indices followed by double excitation amplitudes i.e. [[[i,j,kI],t_ijkl], ...]
OR [NxNxNxN] array storing double excitation amplitudes corresponding to t[i,jk,1] *
(a_i”dagger a_j a_k~daggera_l - H.C.)

* anti_hermitian (Bool) — Flag to generate only normal CCSD operator rather than
unitary variant, primarily for testing

Returns uccsd_generator(FermionOperator) — Anti-hermitian fermion operator that is the generator
for the uccsd wavefunction.

openfermion.utils.ucesd_singlet_generator (packed_amplitudes, n_qubits, n_electrons,

]) anti_hermitian=True)
Create a singlet UCCSD generator for a system with n_electrons

This function generates a FermionOperator for a UCCSD generator designed to act on a single reference
state consisting of n_qubits spin orbitals and n_electrons electrons, that is a spin singlet operator, meaning
it conserves spin.

Parameters

* packed amplitudes (I1ist) — List storing the unique single and double excitation
amplitudes for a singlet UCCSD operator. The ordering lists unique single excitations before
double excitations.

* n_qubits (int)— Number of spin-orbitals used to represent the system, which also cor-
responds to number of qubits in a non-compact map.

* n_electrons (int) - Number of electrons in the physical system.

* anti_hermitian (Bool) — Flag to generate only normal CCSD operator rather than
unitary variant, primarily for testing

Returns
generator(FermionOperator) —
Generator of the UCCSD operator that builds the UCCSD wavefunction.
openfermion.utils.ucecsd_singlet_get_packed_amplitudes (single_amplitudes, dou-

ble_amplitudes, n_qubits,

n_electrons)
Convert amplitudes for use with singlet UCCSD

78 Chapter 1. Code Documentation

openfermion Documentation, Release 0.11.1.dev

The output list contains only those amplitudes that are relevant to singlet UCCSD, in an order suitable for use
with the function uccsd_singlet_generator.

Parameters

* single_amplitudes (ndarray) — [NxN] array storing single excitation amplitudes
corresponding to t[i,j] * (a_i"dagger a_j - H.C.)

* double_amplitudes (ndarray) - [NxNxNxN] array storing double excitation ampli-
tudes corresponding to t[i,j,k,1] * (a_i*dagger a_j a_k~dagger a_1 - H.C.)

* n_qubits (int)— Number of spin-orbitals used to represent the system, which also cor-
responds to number of qubits in a non-compact map.

* n_electrons (int)— Number of electrons in the physical system.
Returns
packed_amplitudes(list) —

List storing the unique single and double excitation amplitudes for a singlet UCCSD operator.
The ordering lists unique single excitations before double excitations.

openfermion.utils.ucesd_singlet_paramsize (n_qubits, n_electrons)
Determine number of independent amplitudes for singlet UCCSD

Parameters
* n_qubits (int)— Number of qubits/spin-orbitals in the system
* n_electrons (int)— Number of electrons in the reference state
Returns Number of independent parameters for singlet UCCSD with a single reference.
openfermion.utils.up_then_down (mode_idx, num_modes)

up then down reordering, given the operator has the default even-odd ordering. Otherwise this function
will reorder indices where all even indices now come before odd indices.

Example: 0,1,2,3,4,5->0,2,4,1,3,5
The function takes in the index of the mode that will be relabeled and the total number modes.
Parameters
* mode_idx (int) - the mode index that is being reordered
* num_modes (int) — the total number of modes of the operator.
Returns (int): reordered index of the mode.

openfermion.utils.variance (operator, state)
Compute variance of operator with a state.

Parameters

* operator (scipy.sparse.spmatrix or scipy.sparse.linalg.
LinearOperator) — The operator whose expectation value is desired.

* state (numpy.ndarray or scipy.sparse.spmatrix)— A numpy array repre-
senting a pure state or a sparse matrix representing a density matrix.

Returns A complex number giving the variance.

Raises ValueError — Input state has invalid format.

1.5. openfermion.utils 79

openfermion Documentation, Release 0.11.1.dev

openfermion.utils.wedge (left_tensor, right_tensor, left_index_ranks, right_index_ranks)
Implement the wedge product between left_tensor and right_tensor

The wedge product is defined as
1\2
ail,z’Q,...,ip A bip+1,ip+2,...,iN _ () _ Z 6(71‘)6(0’)71’0‘@7;-1’1-2"”77;;' bi_p+1,ip+2,...,iN (126)

J1,325-3Jp Jp+1:dp+2s--3JN N! J15J25--5dp Jp+1:Jp+25--JN
T,0

The top indices are those that transform contravariently. The bottom indices transform covariently.

The tensor storage convention for marginals follows the OpenFermion convention. tpdm[i, j, k, 1] = <i* j* k 1>,
rtensor[ul, u2, u3, d1] = <ul” u2* u3r di>

Parameters
* left_tensor - left tensor to wedge product
* right_tensor —right tensor to wedge product

* left_index_ ranks - tuple of number of indices that transform contravariently and co-
variently

* right_index_ranks — tuple of number of indices that transform contravariently and
covariently

Returns new tensor constructed as the wedge product of the left_tensor and right_tensor

80 Chapter 1. Code Documentation

Python Module Index

o

openfermion.
openfermion.

openfermion

openfermion

hamiltonians, 3
measurements, 19

.ops, 22
openfermion.
.utils, 48

transforms, 37

81

openfermion Documentation, Release 0.11.1.dev

82 Python Module Index

Index

Sym bols __init_ () (openfermion.utils.SparseDavidson
__init__ () (openfermion.hamiltonians.FermiHubbardModel method), 53
method), 4
__init__ () (openfermion.hamiltonians.HartreeFockFunctional
method), 6 accumulate () (openfermion.ops.SymbolicOperator
__init__ () (openfermion.hamiltonians.MolecularData class method), 36
method), 9 action_before_index (open-
__init__ () (openfermion.ops.BinaryCode method), fermion.ops.BosonOperator attribute), 24
22 action_before_index (open-
__init_ () (openfermion.ops.BinaryPolynomial fermion.ops.FermionOperator attribute),
method), 23 26
__init__ () (openfermion.ops.DiagonalCoulombHamiltodsdrion_Pefore_index (open-
method), 25 Sfermion.ops.IsingOperator attribute), 28
__init__ () (openfermion.ops.InteractionOperator action_before_index (open-
method), 27 fermion.ops.QuadOperator attribute), 3 1
__init_ () (openfermion.ops.InteractionRDM action_before_index (open-
method), 28 fermion.ops.QubitOperator attribute), 35
__dinit__ () (openfermion.ops.MajoranaOperator 2action_before_index (open-
method), 29 Sfermion.ops.SymbolicOperator attribute),
__init__ () (openfermion.ops.PolynomialTensor 35,36
method), 30 action_strings (openfermion.ops.BosonOperator
__init__ () (openfermion.ops.QuadraticHamiltonian attribute), 25
method), 32 action_strings (openfermion.ops.FermionOperator
__init_ () (openfermion.ops.SymbolicOperator attribute), 26
method), 36 action_strings (openfermion.ops.IsingOperator at-
__init__ () (openfermion.utils.Davidson method), 48 tribute), 28 .
__init_ () (openfermion.utils.DavidsonOptions action_strings (openfermion.ops.QuadOperator
method), 48 attribute), 31
__init__ () (openfermion.utils.Grid method), 49 action_strings (openfermion.ops.QubitOperator
__init__ () (openfermion.utils.HubbardSquareLattice attribute), 35
method), 51 action_strings (open-
__init__ () (openfermion.utils.LinearQubitOperator fermion.ops.SymbolicOperator attribute),
method), 52 35,36 _ ‘
__init__ () (openfermion.utils.LinearQubitOperatorOptifk 1ons (openfermion.ops.BosonOperator attribute),
method), 52 5 . . .
__init__ () (openfermion.utils.ParallelLinearQubitOperafor ions (openfermion.ops.FermionOperator attribute),
method), 52 26 . . '
__init_ () (openfermion.utils.QubitDavidson ~actions (openfermion.ops.IsingOperator attribute), 28
method), 53 actions (openfermion.ops.QuadOperator attribute),

31

83

openfermion Documentation, Release 0.11.1.dev

actions (openfermion.ops.QubitOperator attribute),

35
actions (openfermion.ops.SymbolicOperator at-
tribute), 35, 36
add_chemical_potential () (open-
fermion.ops.QuadraticHamiltonian ~— method),
32
all_points_indices () (openfermion.utils.Grid
method), 49
amplitude_damping_channel () (in module

openfermion.utils), 53

anticommutator () (in module openfermion.utils),
53

antisymmetric_part (open-
Sfermion.ops.QuadraticHamiltonian attribute),
32

apply_constraints () (in
fermion.measurements), 19

atoms (openfermion.hamiltonians.MolecularData at-
tribute), 8

module open-

B

basis (openfermion.hamiltonians.MolecularData at-
tribute), 7

bch_expand () (in module openfermion.utils), 53

binary_code_transform() (in module open-
fermion.transforms), 37

binary_partition_iterator () (in module

ccsd_energy (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

ccsd_single_amps (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

charge (openfermion.hamiltonians.MolecularData at-
tribute), 7

checksum_code () (in module open-
fermion.transforms), 39

chemical_potential (open-

Sfermion.ops.QuadraticHamiltonian attribute),

32

chemist_ordered () (in module openfermion.utils),
54

cisd_energy (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

cisd_one_rdm (open-
Sfermion.hamiltonians.MolecularData at-
tribute), 8

cisd_two_rdm (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

combined_hermitian_part (open-

fermion.ops.QuadraticHamiltonian attribute),
32
commutator () (in module openfermion.utils), 55

openfermion.measurements), 20 commutes_with () (open-
BinaryCode (class in openfermion.ops), 22 fermion.ops.MajoranaOperator method),
BinaryPolynomial (class in openfermion.ops), 23 29
bose_hubbard () (in module open- compress () (openfermion.ops.SymbolicOperator
fermion.hamiltonians), 10 method), 36
boson_ladder_sparse() (in module open- conserves_particle_number (open-
fermion.utils), 54 fermion.ops.QuadraticHamiltonian attribute),
boson_operator_sparse () (in module open- 32
fermion.utils), 54 constant (openfermion.ops.DiagonalCoulombHamiltonian
BosonOperator (class in openfermion.ops), 24 attribute), 25
bravyi_kitaev () (in module open- constant (openfermion.ops.Polynomiallensor at-
fermion.transforms), 38 tribute), 30
bravyi_kitaev_code () (in module open- constant (openfermion.ops.SymbolicOperator — at-
fermion.transforms), 38 tribute), 36
bravyi_kitaev_fast () (in module open- constraint matrix() (in module open-
Sfermion.transforms), 38 fermion.measurements), 20
bravyi_kitaev_tree () (in module open- count_qubits () (in module openfermion.utils), 55
fermion.transforms), 38 D
C Davidson (class in openfermion.utils), 48
canonical orbitals (open- DavidsonOptions (class in openfermion.utils), 48
fermion.hamiltonians.MolecularData at- decoder (openfermion.ops.BinaryCode attribute), 22
tribute), 8 delta_mag () (open-
ccsd_double_amps (open- Sfermion.utils. HubbardSquareLattice method),
Sfermion.hamiltonians.MolecularData at- 51
tribute), 8
84 Index

openfermion Documentation, Release 0.11.1.dev

dephasing_channel () (in module open-
fermion.utils), 55

depolarizing_channel () (in module open-
Sfermion.utils), 55

description (open-
fermion.hamiltonians.MolecularData at-
tribute), 7

DiagonalCoulombHamiltonian (class in open-
fermion.ops), 25

diagonalizing bogoliubov_transform()
(openfermion.ops.QuadraticHamiltonian
method), 32

diagonalizing_circuit () (open-
fermion.ops.QuadraticHamiltonian ~— method),
33

different_indices_commute (open-
fermion.ops.BosonOperator attribute), 25

different_indices_commute (open-
fermion.ops.FermionOperator attribute),
26

different_indices_commute (open-

fermion.ops.IsingOperator attribute), 28

different_indices_commute (open-
fermion.ops.QuadOperator attribute), 31

different_indices_commute (open-
Sfermion.ops.QubitOperator attribute), 35

different_indices_commute (open-
fermion.ops.SymbolicOperator attribute),

35, 36
dimensions (openfermion.utils.Grid attribute), 49
dissolve () (in module openfermion.transforms), 39
double_ commutator () (in module open-
fermion.utils), 56
down_index () (in module openfermion.ops), 37
dual_basis_external_potential () (in mod-
ule openfermion.hamiltonians), 11
dual_basis_jellium_model () (in module open-
fermion.hamiltonians), 11

dual_basis_kinetic () (in module open-
fermion.hamiltonians), 12
dual_basis_potential () (in module open-

fermion.hamiltonians), 12

E

edge_types (openfermion.utils. HubbardSquareLattice
attribute), 51
edit_hamiltonian_for_spin()
openfermion.transforms), 39
eigenspectrum () (in module openfermion.utils), 56
encoder (openfermion.ops.BinaryCode attribute), 22
energy_from_rhf_opdm() (open-
fermion.hamiltonians.HartreeFockFunctional

method), 7

(in module

(open-
method),

enumerate_qubits ()
fermion.ops.BinaryPolynomial
23

error_bound () (in module openfermion.utils), 56

error_operator () (in module openfermion.utils),

56
evaluate () (openfermion.ops.BinaryPolynomial
method), 23

expectation () (in module openfermion.utils), 57

expectation () (openfermion.ops.InteractionRDM
method), 28

expectation_computational_basis_state ()
(in module openfermion.utils), 57

F

fci_energy (openfermion.hamiltonians.MolecularData
attribute), 8

fci_one_rdm (open-
Sfermion.hamiltonians.MolecularData at-
tribute), 8

fci two_rdm (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

fermi_hubbard/() (in module open-
Sfermion.hamiltonians), 12

FermiHubbardModel (class in open-

fermion.hamiltonians), 3
FermionOperator (class in openfermion.ops), 25
filename (openfermion.hamiltonians.MolecularData

attribute), 7

fock_matrix (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

fourier_transform() (in module open-

Sfermion.utils), 57

freeze_orbitals () (in module openfermion.utils),
57

from_dict () (openfermion.ops.MajoranaOperator
static method), 29

G

gaussian_state_preparation_circuit () (in
module openfermion.utils), 58

general_basis_change () (in module open-
fermion.ops), 37

general_calculations (open-
Sfermion.hamiltonians.MolecularData at-

tribute), 9
generate_linear_qubit_operator () (in mod-
ule openfermion.utils), 59
generate_parity_permutations () (in module
openfermion.utils), 59
geometry (openfermion.hamiltonians.MolecularData
attribute), 7

Index

85

openfermion Documentation, Release 0.11.1.dev

geometry_from_pubchem() (in module open-
fermion.utils), 59

get_active_space_integrals() (open-
Sfermion.hamiltonians.MolecularData method),

9

get_boson_operator () (in module open-
fermion.transforms), 39
get_chemist_two_body_coefficients () (in
module openfermion.utils), 59
get_diagonal_coulomb_hamiltonian () (in
module openfermion.transforms), 39
get_fermion_operator () (in module open-

fermion.transforms), 40

get_file_path () (in module openfermion.utils), 60

get_from_file () (open-
fermion.hamiltonians.MolecularData method),
9

get_gap () (in module openfermion.utils), 60

get_ground_state () (in module open-
fermion.utils), 60
get_integrals () (open-

fermion.hamiltonians.MolecularData method),
10
get_interaction_operator () (in module open-
fermion.transforms), 40
get_interaction_rdm()
fermion.transforms), 40
get_linear_qubit_operator_diagonal () (in
module openfermion.utils), 60
get_lowest_n () (openfermion.utils.Davidson
method), 48
get_majorana_operator ()
fermion.transforms), 40

(in module open-

(in module open-

get_matrix_of_eigs () (in module open-
fermion.hamiltonians), 14

get_molecular_data() (in module open-
fermion.transforms), 40

get_molecular_hamiltonian () (open-

fermion.hamiltonians.MolecularData method),
10

get_molecular_rdm() (open-
fermion.hamiltonians.MolecularData method),
10

get_n_alpha_electrons|() (open-
fermion.hamiltonians.MolecularData method),
10

get_n_beta_electrons () (open-
fermion.hamiltonians.MolecularData method),
10

get_number_preserving_sparse_operator ()

(open-
method),

get_operators ()
Sfermion.ops.SymbolicOperator
36

get_pool () (openfermion.utils.LinearQubitOperatorOptions

method), 52

get_processes () (open-
fermion.utils.LinearQubitOperatorOptions
method), 52

get_quad_operator () (in module open-
fermion.transforms), 42

get_quadratic_hamiltonian () (in module
openfermion.transforms), 42

get_qubit_expectations () (open-

Sfermion.ops.InteractionRDM method), 28

get_sparse_operator () (in module
fermion.transforms), 42

Grid (class in openfermion.utils), 49

grid_indices () (openfermion.utils.Grid method),
50

ground_energy ()
fermion.ops.QuadraticHamiltonian
33

group_into_tensor_product_basis_sets ()
(in module openfermion.utils), 61

open-

(open-
method),

H

haar_random_vector ()
fermion.utils), 61

hartree_fock_state_jellium()
openfermion.utils), 61

(in module open-

(in module

HartreeFockFunctional (class in open-
fermion.hamiltonians), 6

hermitian_conjugated() (in module open-
fermion.utils), 62

hermitian_part (open-

fermion.ops.QuadraticHamiltonian attribute),
33
hf_energy (openfermion.hamiltonians.MolecularData
attribute), 8
HubbardSquarelLattice
Sfermion.utils), 51

(class in open-

hypercube_grid_with_given_wigner_seitz_radius_and_:

(in module openfermion.hamiltonians), 14

identity () (openfermion.ops.BinaryPolynomial class
method), 24

identity () (openfermion.ops.SymbolicOperator
class method), 36

X - index_to_momentum_ints () (open-
(in module openfermion.transforms), 41 fermion.utils.Grid method), 50
get_operat'or_groups (? (open- induced_norm () (open-
fermion.ops.SymbolicOperator method), fermion.ops.SymbolicOperator method),
36 36
86 Index

openfermion Documentation, Release 0.11.1.dev

init_lazy_properties () (open-
fermion.hamiltonians.MolecularData method),
10

inline_sum() (in module openfermion.utils), 62

inner_product () (in module openfermion.utils), 62

InteractionOperator (class in openfermion.ops),
26

InteractionRDM (class in openfermion.ops), 27

interleaved_code () (in module open-
fermion.transforms), 43

inverse_ fourier_ transform() (in module
openfermion.utils), 62

is_boson_preserving () (open-

fermion.ops.BosonOperator method), 25
is_gaussian () (openfermion.ops.QuadOperator
method), 31
is_hermitian () (in module openfermion.utils), 62
is_identity () (in module openfermion.utils), 62
is_normal_ordered() (open-
fermion.ops.BosonOperator method), 25

is_normal_ ordered() (open-
fermion.ops.FermionOperator method),
26

is_normal_ordered() (open-

fermion.ops.QuadOperator method), 31
is_two_body_number_conserving() (open-

fermion.ops.FermionOperator method), 26
IsingOperator (class in openfermion.ops), 28

J

jellium_model () (in module open-
fermion.hamiltonians), 14

jordan_wigner () (in module open-
fermion.transforms), 43

jordan_wigner_code () (in module open-

fermion.transforms), 43
jordan_wigner_dual_basis_hamiltonian ()
(in module openfermion.hamiltonians), 14

Jjordan_wigner_dual_basis_jellium/() (in
module openfermion.hamiltonians), 15
jordan_wigner_sparse () (in module open-

fermion.utils), 62
jw_configuration_state ()
fermion.utils), 62
Jjw_get_gaussian_state ()

Sfermion.utils), 63

(in module open-

(in module open-

jw_get_ground_state_at_particle_number ()map_ one_pdm_to_one_hole_dm()

(in module openfermion.utils), 63
jw_hartree_fock_state () (in module open-
fermion.utils), 63
Jjw_number_restrict_operator ()
openfermion.utils), 63
jw_number_restrict_state () (in module open-
fermion.utils), 64

(in module

jw_slater_determinant () (in module open-
fermion.utils), 64

jw_sz_restrict_operator () (in module open-
Sfermion.utils), 64

Jjw_sz_restrict_state ()

fermion.utils), 65

(in module open-

L

lambda_norm () (in module openfermion.utils), 65
length (openfermion.utils.Grid attribute), 49

linearize_decoder () (in module open-
fermion.transforms), 43
linearize_term/() (in module open-

fermion.measurements), 20
LinearQubitOperator (class in openfermion.utils),
52
LinearQubitOperatorOptions (class in open-
fermion.utils), 52
load_molecular_hamiltonian ()
openfermion.hamiltonians), 15
load_operator () (in module openfermion.utils), 65

(in module

low_depth_second_order_trotter_error_bound()

(in module openfermion.utils), 65

low_depth_second_order_trotter_error_operator()

(in module openfermion.utils), 66

low_rank_two_body_decomposition () (in
module openfermion.utils), 66

M

majorana_form() (open-
fermion.ops.QuadraticHamiltonian ~— method),
33

majorana_operator () (in module open-

fermion.utils), 67
MajoranaOperator (class in openfermion.ops), 28
make_atom () (in module openfermion.hamiltonians),
15

make_atomic_lattice () (in module open-
fermion.hamiltonians), 15

make_atomic_ring() (in module open-
fermion.hamiltonians), 16

many_body_order () (open-
Sfermion.ops.SymbolicOperator method),

36
map_one_hole_dm_to_one_pdm()
openfermion.utils), 67

(in module

(in module
openfermion.utils), 68

map_particle_hole_dm_to_one_pdm() (in
module openfermion.utils), 68
map_particle_hole_dm_to_two_pdm() (in

module openfermion.utils), 68
map_two_hole_dm_to_one_hole_dm() (in mod-
ule openfermion.utils), 68

Index

87

openfermion Documentation, Release 0.11.1.dev

map_two_hole_dm_to_two_pdm() (in module

openfermion.utils), 68

map_two_pdm_to_one_pdm () (in module open-

Sfermion.utils), 68
map_two_pdm_to_particle_hole_dm() (in
module openfermion.utils), 69
map_two_pdm_to_two_hole_dm() (in module
openfermion.utils), 69
mean_field_dwave () (in module open-
fermion.hamiltonians), 16
module_importable () (in module open-

fermion.utils), 69
MolecularData (class in openfermion.hamiltonians),
7

momentum_ints_to_index () (open-
fermion.utils.Grid method), 50
momentum_ints_to_value () (open-

Sfermion.utils.Grid method), 50
momentum_vector () (openfermion.utils.Grid
method), 50
mp2_enerqgy (openfermion.hamiltonians.MolecularData
attribute), 8

multiplicity (open-
fermion.hamiltonians.MolecularData at-
tribute), 7

N

n_atoms (openfermion.hamiltonians.MolecularData at-
tribute), 7

n_body_tensors (open-
fermion.ops.PolynomialTensor attribute),
30

n_dofs (openfermion.utils. HubbardSquareLattice at-
tribute), 51

n_electrons (open-
fermion.hamiltonians.MolecularData at-
tribute), 7

n_horizontal_neighbor_pairs() (open-

fermion.utils. HubbardSquareLattice method),
51

n_modes (openfermion.ops.BinaryCode attribute), 22

n_neighbor_pairs() (open-
fermion.utils. HubbardSquareLattice method),
51

n_orbitals (openfermion.hamiltonians.MolecularData
attribute), 8

n_qubits (openfermion.hamiltonians.MolecularData
attribute), 8

n_qubits (openfermion.ops.BinaryCode attribute), 22

n_vertical_neighbor_pairs/() (open-
fermion.utils. HubbardSquareLattice method),

51

name (openfermion.hamiltonians.MolecularData at-
tribute), 7

normal_ordered () (in module openfermion.utils),
69

nuclear_repulsion (open-
Sfermion.hamiltonians.MolecularData at-

tribute), 8
num_points (openfermion.utils.Grid attribute), 49

number_operator () (in module openfermion.utils),
69

O

one_body (openfermion.ops.Diagonal CoulombHamiltonian

attribute), 25
one_body_fermion_constraints () (in module
openfermion.measurements), 20

one_body_integrals (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

one_body_tensor (open-
Sfermion.ops.InteractionOperator attribute),
27

one_body_tensor (open-
fermion.ops.InteractionRDM attribute), 27,
28

onsite_edge_types (open-

fermion.utils. HubbardSquareLattice attribute),

51
openfermion.
openfermion.
openfermion.

hamiltonians (module), 3

measurements (module), 19

ops (module), 22

openfermion.transforms (module), 37

openfermion.utils (module), 48

orbital_energies
Sfermion.hamiltonians.MolecularData
tribute), 8

orbital_energies()
fermion.ops.QuadraticHamiltonian
34

orbital_id () (openfermion.utils.Grid method), 50

overlap_integrals (open-
fermion.hamiltonians.MolecularData at-
tribute), 8

(open-
at-

(open-
method),

P

ParallelLinearQubitOperator (class in open-

n_qubits (openfermion.ops.PolynomialTensor at- fermion.utils), 52
tribute), 30 parity_code () (in module openfermion.transforms),
n_sites (openfermion.utils.HubbardSquareLattice at- 43
tribute), 51 partition_iterator () (in module open-
Sfermion.measurements), 20
88 Index

openfermion Documentation, Release 0.11.1.dev

pauli_exp_to_gasm() module
fermion.utils), 70
pauli_string_iterator ()
fermion.measurements), 21
plane_wave_external_potential ()
ule openfermion.hamiltonians), 17
plane_wave_hamiltonian () (in module open-

fermion.hamiltonians), 17

(in open-
(in module open-

(in mod-

plane_wave_kinetic () (in module open-
fermion.hamiltonians), 18
plane_wave_potential () (in module open-

fermion.hamiltonians), 18
PolynomialTensor (class in openfermion.ops), 29
position_vector () (openfermion.utils.Grid

method), 50
prepare_one_body_squared_evolution () (in

module openfermion.utils), 70

preprocess_lcu_coefficients_for_reversibtkfspmpamagt{d matrix ()

(in module openfermion.utils), 71

project_onto_sector () (in module open-
fermion.transforms), 43

projected_n_body_tensors () (open-
fermion.ops.PolynomialTensor method),
30

projection_error () (in module open-

fermion.transforms), 44
prony () (in module openfermion.measurements), 21
protons (openfermion.hamiltonians.MolecularData at-
tribute), 8
prune_unused_indices ()
Sfermion.utils), 71

(in module open-

Q

QuadOperator (class in openfermion.ops), 30
QuadraticHamiltonian (class in openfermion.ops),
31
qubit_operator_sparse ()
fermion.utils), 71
QubitDavidson (class in openfermion.utils), 52
QubitOperator (class in openfermion.ops), 34

R

random_antisymmetric_matrix()
openfermion.utils), 71
random_diagonal_coulomb_hamiltonian ()
(in module openfermion.utils), 71
random_hermitian_matrix () (in module open-
fermion.utils), 72
random_interaction_operator ()
openfermion.utils), 72
random_quadratic_hamiltonian () (in module
openfermion.utils), 72
random_unitary_matrix()
fermion.utils), 72

(in module open-

(in module

(in module

(in module open-

rdms_from_rhf_opdm () (open-
Sfermion.hamiltonians.HartreeFockFunctional
method), 7

reciprocal_scale
tribute), 49

reduce_number_of_terms ()
fermion.utils), 72

renormalize () (openfermion.ops.QubitOperator
method), 35

reorder () (in module openfermion.utils), 73

reverse_jordan_wigner () (in module open-
fermion.transforms), 44

rhf_global_gradient () (open-
Sfermion.hamiltonians.HartreeFockFunctional
method), 7

rhf minimization () (in
fermion.hamiltonians), 18

(openfermion.utils.Grid at-

(in module open-

module open-

(in module open-
fermion.hamiltonians), 19

rotate_basis ()
fermion.ops.PolynomialTensor
30

rotate_qubit_by_pauli ()

fermion.transforms), 45

(open-
method),

(in module open-

S

s_minus_operator ()
fermion.utils), 73
s_plus_operator () (in module openfermion.utils),
74
s_squared_operator ()
Sfermion.utils), 74
(openfermion.hamiltonians.MolecularData
method), 10
save_operator () (in module openfermion.utils), 74
scale (openfermion.utils.Grid attribute), 49

(in module open-

(in module open-

save ()

set_dimension () (open-
Sfermion.utils.DavidsonOptions method),
49

shift () (openfermion.ops.BinaryPolynomial method),
24

shifts (openfermion.utils.Grid attribute), 49

site_pairs_iter () (open-

Sfermion.utils. HubbardSquareLattice method),
51
slater_determinant_preparation_circuit ()
(in module openfermion.utils), 74
sparse_eigenspectrum() (in module
fermion.utils), 75
SparseDavidson (class in openfermion.utils), 53
Spin (class in openfermion.utils), 53
spinless (openfermion.utils. HubbardSquareLattice
attribute), 51
SpinPairs (class in openfermion.utils), 53

open-

Index

89

openfermion Documentation, Release 0.11.1.dev

sx_operator () (in module openfermion.utils), 75
sy_operator () (in module openfermion.utils), 75
SymbolicOperator (class in openfermion.ops), 35

symmetric_ordering () (in module open-
fermion.transforms), 45
symmetry_conserving_bravyi_kitaev () (in

module openfermion.transforms), 45
sz_operator () (in module openfermion.utils), 75

T

taper_off_qubits()
fermion.utils), 76

terms (openfermion.ops.BinaryPolynomial attribute),
23

terms (openfermion.ops.MajoranaOperator attribute),
29

terms (openfermion.ops.SymbolicOperator attribute),
35

to_site_index () (open-
Sfermion.utils. HubbardSquareLattice method),
52

trotter_operator_grouping()
openfermion.utils), 76

(in module open-

(in module

unlinearize_term() (in module
fermion.measurements), 21
up_index () (in module openfermion.ops), 37

up_then_down () (in module openfermion.utils), 79

V

variance () (in module openfermion.utils), 79

verstraete_cirac_2d_square () (in module
openfermion.transforms), 46

volume (openfermion.utils.Grid attribute), 49

volume_scale () (openfermion.utils.Grid method),
51

open-

W

wedge () (in module openfermion.utils), 79

weight_one_binary_addressing_code () (in
module openfermion.transforms), 47
weight_one_segment_code () (in module open-

fermion.transforms), 47
weight_two_segment_code () (in module open-

fermion.transforms), 47
weyl_polynomial_quantization () (in module

openfermion.transforms), 47

trotterize_exp_qubop_to_gasm() (in module wigner_ seitz_length_scale() (in module
openfermion.utils), 77 openfermion.hamiltonians), 19
two_body (openfermion.ops.DiagonalCoulombHamiltoniami th_basis_rotated_by () (open-
attribute), 25 Sfermion.ops.MajoranaOperator method),
two_body_fermion_constraints () (in module 29
openfermion.measurements), 21
two_body_integrals (open- Z
Jfermion.hamiltonians.MolecularData ar- zero () (openfermion.ops.BinaryPolynomial class
tribute), 8 method), 24
two_body_tensor (open- zero () (openfermion.ops.SymbolicOperator class
fermion.ops.InteractionOperator attribute), method), 37
27
two_body_tensor (open-
fermion.ops.InteractionRDM attribute),
28
U
uccsd_convert_amplitude_format () (in mod-
ule openfermion.utils), 77
uccsd_generator () (in module openfermion.utils),
78
uccsd_singlet_generator () (in module open-
fermion.utils), 78
uccsd_singlet_get_packed_amplitudes ()
(in module openfermion.utils), 78
uccsd_singlet_paramsize () (in module open-
fermion.utils), 79
unique_iter () (open-
fermion.ops.InteractionOperator method),
27
90 Index

	Code Documentation
	openfermion.hamiltonians
	openfermion.measurements
	openfermion.ops
	openfermion.transforms
	openfermion.utils

	Python Module Index
	Index

